Claim Missing Document
Check
Articles

PENGGUNAAN KATALIS PALADIUM DALAM REAKSI ARILASI n-OKTILSILAN DENGAN 2-IODIDA-5-METIL TIOFEN Aldes Lesbani; Addy Rachmat; Risfidian Mohadi; Eliza Eliza
Molekul Vol 9, No 1 (2014)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (594.063 KB) | DOI: 10.20884/1.jm.2014.9.1.146

Abstract

Telah dilakukan proses arilasi n-oktilsilan dengan 2-iodida-5-metil tiofen mengunakan katalis palladium dengan teknik reaksi kopling untuk mendapatkan variasi senyawa hasil arilasi. Produk hasil arilasi yang terbentuk dimurnikan dengan metode kromatografi kolom silika dengan eluen etil asetat dan dikarakterisasi menggunakan spektroskopi massa, spektroskopi 1H NMR, 13C NMR, dan DEPT-135. Hasil penelitian menunjukkan bahwa senyawa yang terbentuk dari hasil arilasi yakni tris(5-metil-2-tiofen)oktilsilan yang berupa cairan tak berwarna dengan nilaim/z sebesar 432. Hasil pengukuran menggunakan spektroskopi 1H NMR menghasilkan tujuh proton ekivalen. Pengukuran menggunakan spektroskopi 13C NMR menghasilkan tiga belas karbon ekivalen yang kemudian dikonfirmasi dengan DEPT-135. Hasil karakterisasi menggunakan spektroskopi massa dan spektroskopi NMR (H dan C) menunjukkan senyawa hasil sintesis adalah tris(5-metil-2-tiofen)oktilsilan.
Oxidation of Cyclohexane to Cylohexanol and Cyclohexanone Over H4[a-SiW12O40]/TiO2 Catalyst Aldes Lesbani; Fatmawati Fatmawati; Risfidian Mohadi; Najma Annuria Fithri; Dedi Rohendi
Indonesian Journal of Chemistry Vol 16, No 2 (2016)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (404.462 KB) | DOI: 10.22146/ijc.21161

Abstract

Oxidation of cyclohexane to cyclohexanol and cyclohexanone was carried out using H4[a-SiW12O40]/TiO2 as catalyst. In the first experiment, catalyst H4[a-SiW12O40]/TiO2 was synthesized and characterized using FTIR spectroscopy and X-Ray analysis. In the second experiment, catalyst H4[a-SiW12O40]/TiO2 was applied for conversion of cyclohexane. The conversion of cyclohexane was monitored using GC and GCMS. The results showed that H4[a-SiW12O40]/TiO2 was successfully synthesized using 1 g of H4[a-SiW12O40] and 0.5 g of TiO2. The FTIR spectrum showed vibration of H4[a-SiW12O40] appeared at 771-979 cm-1 and TiO2 at 520-680 cm-1. The XRD powder pattern analysis indicated that crystallinity of catalyst still remained after impregnation to form H4[a-SiW12O40]/TiO2. The H4[a-SiW12O40]/TiO2 catalyst was used for oxidation of cyclohexane in heterogeneous system under mild condition at 2 h, 70 °C, 0.038 g catalyst, and 3 mL hydrogen peroxide to give cyclohexanone as major product.
Oxidative Desulfurization of Dibenzothiophene Using Dawson Type Heteropoly Compounds/Tantalum as Catalyst Risfidian Mohadi; Lusi Teresia; Najma Annuria Fithri; Aldes Lesbani; Nurlisa Hidayati
Indonesian Journal of Chemistry Vol 16, No 1 (2016)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (372.893 KB) | DOI: 10.22146/ijc.21185

Abstract

Catalyst (NH4)6[b-P2W18O62]/Ta has been synthesized by simple wet impregnation at 30-40 °C under atmospheric conditions using Dawson type polyoxometalate (NH4)6[b-P2W18O62] and tantalum. The catalyst was characterized by FTIR spectrophotometer, XRD, SEM, and N2 adsorption desorption methods. FTIR spectrum of (NH4)6[b-P2W18O62]/Ta showed that Dawson type polyoxometalate (NH4)6[b-P2W18O62] and Ta was successfully impregnated which was indicated by vibration spectrum at wavenumber of 900-1100 cm-1 for polyoxometalate and 550 cm-1 for Ta. The surface area of the (NH4)6[b-P2W18O62]/Ta after impregnation was higher than (NH4)6[b-P2W18O62]•nH2O and its morphology was found to be uniform. The catalytic activity of (NH4)6[b-P2W18O62]/Ta toward desulfurization of dibenzothiophene was three times higher than the original catalyst of (NH4)6[b-P2W18O62]•nH2O without impregnation. The catalytic regeneration test of catalyst (NH4)6[b-P2W18O62]/Ta showed that the catalytic activity for first regeneration of catalyst has similar catalytic activity with the fresh catalyst without loss of catalytic activity indicated by almost similar percent conversion.
Conversion of Cyclohexanone to Adipic Acid Catalyzed by Heteropoly Compounds Aldes Lesbani; Fitriliana Fitriliana; Risfidian Mohadi
Indonesian Journal of Chemistry Vol 15, No 1 (2015)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (395.801 KB) | DOI: 10.22146/ijc.21225

Abstract

Conversion of cyclohexanone to adipic acid using hydrogen peroxide as green oxidant catalyzed by heteropoly compounds i.e. H5[a-BW12O40] H4[a-SiW12O40] and H4[a-PVMo11O40] has been carried out systematically in one pot synthesis under mild condition. The product of adipic acid was characterized using GC-MS, FT-IR, 1H-NMR and 13C-NMR spectroscopy. The results show that cyclohexanone could be converted into adipic acid by using H5[a-BW12O40] H4[a-SiW12O40] as catalysts, whereas H4[a-PVMo11O40] did not shows catalytic activity in this reaction. The effect of reaction time gave adipic acid 41% for reaction time 7 h. The yield of adipic acid was 30% with melting point 149-151 °C. The oxidation temperature at 100 °C gave the highest adipic acid 48% was obtained. The FT-IR, 1H-NMR and 13C-NMR spectra of the product are well agreed to the adipic acid standard.
PREPARATION OF CALCIUM OXIDE FROM Achatina fulica AS CATALYST FOR PRODUCTION OF BIODIESEL FROM WASTE COOKING OIL Aldes Lesbani; Palita Tamba; Risfidian Mohadi; Fahmariyanti Fahmariyanti
Indonesian Journal of Chemistry Vol 13, No 2 (2013)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (305.865 KB) | DOI: 10.22146/ijc.21302

Abstract

Preparation of calcium oxide from Achatina fulica shell has been carried out systematically by decomposition for 3 h at various temperatures i.e. 600, 700, 800 and 900 °C. Formation of calcium oxide was characterized using XR diffractometer. The calcium oxide obtained with the optimum temperature decomposition was characterized using FTIR spectroscopy to indicate the functional group in the calcium oxide. The results showed that XRD pattern of materials obtained from decomposition of Achatina fulica shell at 700 °C is similar with XRD pattern of calcium oxide standard from Joint Committee on Powder Diffraction Standards (JCPDS). The IR spectra of calcium oxide appear at wavenumber 362 cm-1 which is characteristic of CaO vibration. Application of calcium oxide from Achatina fulica shell for synthesis of biodiesel from waste cooking oil results in biodiesel with density are in the range of ASTM standard.
SORPTION-DESORPTION MECHANISM OF Zn(II) AND Cd(II) ON CHITIN Sri Juari Santosa; Narsito Narsito; Aldes Lesbani
Indonesian Journal of Chemistry Vol 6, No 1 (2006)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (245.244 KB) | DOI: 10.22146/ijc.21772

Abstract

This study reports the results of the elucidation of the sorption-desorption mechanism of Zn(II) and Cd(II) on chitin through the determination of capacity, energy, and rate constant of sorption as well as the investigation of their desorption properties in NaCl and Na2EDTA solutions. The chitin was isolated through deproteination followed by demineralization of crab (Portunus pelagicus Linn) shell using NaOH solutions. The sorption of both metal ions followed the Langmuir isotherm model, resulting the sorption capacities of 3.2 x 10-4 and 2.8 x 10-4 mol g-1 for Zn(II) and Cd(II), respectively, and sorption energies of 15.1 kJ mol-1 for Zn(II) and 17.9 kJ mol-1 for Cd(II). It was also observed that Zn(II) was sorbed slightly faster than Cd(II) with first order sorption rate constants of 2.82 x 10-3 min-1 for Zn(II) and 2.61 x 10-3 min-1 for Cd(II). The result of the desorption experiment showed that Cd(II) and especially Zn(II) could only be exchanged by Na(I) after desorbing those metal ions by strong chelating agent of EDTA2-. The easier desorption of Zn(II) than Cd(II) by EDTA2- must be attributed by the smaller sorption energy of Zn(II) and by harder acid property of Zn(II) than Cd(II) as EDTA2- contained hard electron donor elements.
Synthesis and Characterization of Chitosan Linked by Methylene Bridge and Schiff Base of 4,4-Diaminodiphenyl Ether-Vanillin Ahmad Fatoni; Poedji Loekitowati Hariani; Hermansyah Hermansyah; Aldes Lesbani
Indonesian Journal of Chemistry Vol 18, No 1 (2018)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (466.923 KB) | DOI: 10.22146/ijc.25866

Abstract

The synthesis chitosan-methylene bridge-Schiff base of 4,4-diaminodiphenyl ether-vanillin using casting method has been done. The aims of this research were modification chitosan with Schiff base of 4,4-diaminodiphenyl ether-vanillin, formaldehyde and its characterization using FTIR spectroscopy, SEM analysis, 1H-NMR and X-Ray Diffraction analysis. The first step was a synthesis of modified chitosan between chitosan and Schiff base of 4,4-diaminodiphenyl ether-vanillin. The second step was chitosan modified Schiff base of 4,4-diaminodiphenyl ether-vanillin then reacted with formaldehyde through casting method. The result showed that chitosan can be modified with Schiff base of 4,4-diaminodiphenyl ether-vanillin and formaldehyde and this modified chitosan can be linked by methylene bridge (-NH-CH2-NH-) and had azomethine group (-C=N-). The functional group of –C=N in modified chitosan before and after adding formaldehyde appeared at a constant wavenumber of 1597 cm-1. The functional group C-N in methylene bridge detected at 1388 and 1496 cm-1. The chitosan-Schiff base of 4,4-diaminodiphenyl ether-vanillin and Chitosan-methylene bridge-Schiff base of 4,4-diaminodiphenyl ether-vanillin had index crystalline (%)16.04 and 25.76, respectively. The chemical sift of signal proton azomethine group (-C=N-) in modified chitosan detected at 8.44–8.48 and 9.77 ppm. Proton from methylene bridge in modified chitosan appeared at 4.97–4.99 and 3.75 ppm. Surface morphology chitosan-methylene bridge-Schiff base of 4,4-diaminodiphenylether-vanillin had dense surfaces, mostly uniform and regular in shape.
Adsorption of Cadmium(II) Using Ca/Al Layered Double Hydroxides Intercalated with Keggin Ion Tarmizi Taher; Yunita Irianty; Risfidian Mohadi; Muhammad Said; Roy Andreas; Aldes Lesbani
Indonesian Journal of Chemistry Vol 19, No 4 (2019)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (375.644 KB) | DOI: 10.22146/ijc.36447

Abstract

Ca/Al layered double hydroxides (Ca/Al LDH) was synthesized using co-precipitation method following calcination at 800 °C and was intercalated with Keggin ion [α-SiW12O40]4– to form intercalated Ca/Al LDH. Materials were characterized using XRD and FTIR spectrophotometer. Furthermore, materials were used as an adsorbent of cadmium(II) from solution. The results showed that layer material was formed completely after calcination which was indicated at diffraction 20° due to loss of water in the interlayer space. Ca/Al LDH after calcination was intercalated with [α-SiW12O40]4– ion and interlayer distance was increased from 4.25 to 4.41 Å showed that intercalation process was successfully conducted. Adsorption of cadmium(II) using Ca/Al LDH was conducted at pH 9 and intercalated Ca/Al LDH at pH 8 showed that intercalated material has slightly faster than Ca/Al LDH without intercalation probably due to slightly increasing interlayer distance of Ca/Al LDH after intercalation. The adsorption capacity of intercalated Ca/Al LDH was higher than Ca/Al LDH without intercalation at the temperature range of 30–50 °C.
High Reusability of NiAl LDH/Biochar Composite in the Removal Methylene Blue from Aqueous Solution Aldes Lesbani; Neza Rahayu Palapa; Rabelia Juladika Sayeri; Tarmizi Taher; Nurlisa Hidayati
Indonesian Journal of Chemistry Vol 21, No 2 (2021)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.56955

Abstract

Ni/Al layered double hydroxide was used as a starting material for composite formation with biochar as a matrix. The materials were characterized using X-ray, FTIR, nitrogen adsorption-desorption, thermal, and morphology analyses. The NiAl LDH/Biochar material is then used as an adsorbent of methylene blue from an aqueous solution. The factor that was influencing adsorption such as pH, time, methylene blue concentration, and temperature adsorption was studied systematically. The regeneration of adsorbent was performed to know the stability of NiAl LDH/Biochar under several cycle adsorption processes. The results showed that NiAl LDH/Biochar has a specific diffraction peak at 11.63° and 22.30°. NiAl LDH/Biochar has more than ten-fold surface area properties (438,942 m2/g) than biochar (50.936 m2/g), and Ni/Al layered double hydroxide (92.682 m2/g). The methylene blue adsorption on NiAl LDH/Biochar follows a pseudo-second-order kinetic adsorption model and classify as physical adsorption. The high reusability properties were found for NiAl LDH/Biochar, which was largely different from biochar and Ni/Al layered double hydroxide.
NiAl Layered Double Hydroxide/Rice Husk Composite for the Efficient Removal of Malachite Green Neza Rahayu Palapa; Tarmizi Taher; Normah Normah; Aldes Lesbani
Indonesian Journal of Chemistry Vol 22, No 1 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.68021

Abstract

Rice husk biochar (BC) loaded NiAl layered double hydroxide (LDH) has been synthesized to form NiAl LDH/BC composite through a co-precipitation method. NiAl LDH/BC has been used as an adsorbent to remove malachite green from water efficiently. The specific surface area analysis revealed that the surface area of NiAl LDH/BC composite increased five times, from 92.6 to 438.9 m2/g, compared to the original NiAl LDH. The adsorption studies revealed that NiAl LDH/BC composite followed the pseudo-second-order kinetic adsorption model while the isotherm followed the Langmuir monolayer adsorption model. The maximum adsorption capacity of NiAl LDH/BC composite prepared with a ratio of 1:1 and 1:0.5 achieved 185.1 mg/g and 142.9 mg/g, respectively, which is twice higher than the pristine ones (NiAl LDH). The thermodynamic parameters, determined at 303, 313, 323, and 333 K, revealed that the adsorption process was spontaneous and endothermic. The NiAl LDH/BC composite was tested for three consecutive adsorption-desorption cycles to investigate its reusability performance. It is found that their adsorption performance slightly decreased to 71.8% and 68.3% for NiAl LDH/BC composite 1:0.5 and 1:1, respectively. Therefore, it could be considered that the synthesized NiAl LDH/BC exhibited a good and efficient adsorbent for malachite greed removal.
Co-Authors A. Agnes Abi Sueb Abriyanto, Danang Addy Rachmat Adi Saputra Adi Saputra Adi Saputra Adi Saputra Afifah Rahma Dian Ahmad Fatoni Ahmad Fatoni Alfan Wijaya Alfan Wijaya Alfan Wijaya Amiruddin Supu Amri Amri Amri Andi Wijaya Andreas, Roy Andriani Azora Andriani Azora Anggraini, Ana Arini Fousty Badri Arini Fousty Badri Arison Musri Arison Musri Arsyad, Fitri Suryani Aslihati Aslihati Aslihayati Aslihayati Azhar Kholiq Badri, Arini Fousty Bakri Rio Rahayu Bakri Rio Rahayu Benyamin Lakitan Dedi Rohendi Dedi Setiabudidaya Desnelli Desnelli Dian Monariqsa Dian Monariqsa Didi Jasantri Dormian A N Haloho Dormian A N Haloho Eiffel Ostan Jeski Gultom Elfita Elfita . Elfita Elfita Eliza . Eliza Eliza Eliza Eliza Ema Veronika Turnip Endri Junaidi Eriza Sativa Erviana, Desti Fahma Riyanti Fatmawati Fatmawati Ferlinahayati Ferlinahayati Fitri Suryani Arsyad Fitri, Erni Salasia Fitriliana Fitriliana Hanifah, Yulizah Haris Kriswantoro Hermansyah Hermansyah Hermansyah Hermansyah Hesti A. Harahap Hesti A. Harahap, Hesti Hidayatullah, Muhammad Hilda Zulkifli Hilda Zulkifli Hilda Zulkifli Hiroshi Nishihara Hitoshi Kondo Idha Royani Intan Permata Sari Irfannuddin Irfannuddin Jasantri, Didi Jefri Jefri Jeri Ramadhan Juleanti, Novie Kiki Anggraini Kiki Anggraini Kiki Anggraini, Kiki Komis Krisna Murti Laila Hanum Leni Sinaga Lestari Simanjuntak Lestari Simanjuntak Liasari, Beta Riana Lingga, Fitra Wahyuni Lora Vitanesa Lucyanti . Lucyanti Lucyanti Lusi Teresia Mardianto Mardiyanto Mardiyanto Mardiyanto Mardiyanto Mardiyanto Mardiyanto Mardiyanto Mardiyanto Mardiyanto Mardiyanto Mardiyanto Mardiyanto, Marieska Verawaty Mariska Verawaty Melantina Melan Oktriyanti Melwita, Elda Menik Setyowati Mikha Meilinda Christina Miksusanti Miksusanti Muhammad Imron MUHAMMAD SAID Muhammad Said Muhammad Said Muhammad Said Najma Annuria Fithri Najma Annuria Fithri Najma Annuria Fithri Najma Annuria Fithri, Najma Annuria Narsito Narsito Neza Rahayu Niken Oktora Niken Oktora Nirwan Syarif Normah Normah Normah Normah, Normah Nova Yuliasari Novie Juleanti Novie Juleanti Novie Juleanti Nur Ahmad Nur Ahmad, Nur Nurlisa Hidayati Nurlisa Hidayati Nurlisa Hidayati Nurlisa Hidayati Nurlisa Hidayati Nurlisa Hidayati Nurlisa Hidayati Nurlisa Hidayati Nurlisa Hidayati Nurlisa Hidayati Nurlisa Hidayati Nur’aini, Siti Nyanyu Ummu Hani Palita Tamba Patimah Mega Syah Bahar Nur Siregar Patimah Mega Syah Bahar Nur Siregar Patimah Mega Syah Bahar Nur Siregar Poedji Loekitowati Hariani Putri Erlyn Putri, Bunga Indah R.A. Mika Melviana Rabelia Juladika Sayeri Radja Nardo Purba Rakhmawati Farma Ramadhan, Jeri Rananda Vinsiah Randi O. Saragih Ratna, L.P Ratna, L.P Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risfidian Mohadi Risma Kurniawati M Rohmatullaili Rohmatullaili, Rohmatullaili Roy Andreas Sabat Okta Ceria Sitompul, Sabat Okta Ceria Samat Samat Savira, Dila Setiawan Yusuf Setiawati Yusuf Setiawati Yusuf Sherly Agustina, Sherly Siregar, Patimah Mega Syah Bahar Nur Sitanggang, Jonra P. Soerya, Balada Sri Juari Santosa Suheryanto Suheyanto Suheryanto Sumiati Sumiati SUMIATI, Susila Arita Syaflina Lamin Syafrina Lamin, Syafrina Tamizi Taher Tarmizi Taher Welinda Me Wibiyan, Sahrul Wijaya, Alfan Winda Fitriana Yeni Iswanti Yoshinori Yamanoi Yosi Saria Yosi Saria Yosi Saria Yosine Susi Yosine Susie Yunita Irianty Zahara, Zaqiya Artha Zazili Hanafiah Zultriana