Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Infotekmesin

Improving Cervical Cancer Classification Using ADASYN and Random Forest with GridSearchCV Optimization Saputra, Resha Mahardhika; Alzami, Farrikh; Pramudi, Yuventius Tyas Catur; Erawan, Lalang; Megantara, Rama Aria; Pramunendar, Ricardus Anggi; Yusuf, Moh.
Infotekmesin Vol 16 No 1 (2025): Infotekmesin: Januari 2025
Publisher : P3M Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/infotekmesin.v16i1.2552

Abstract

Cervical cancer is a leading cause of death among women, with over 300,000 deaths recorded in 2020. This study aims to improve the accuracy of cervical cancer diagnosis classification through a combination of Adaptive Synthetic Sampling (ADASYN) and Random Forest algorithm. The research data was obtained from the Cervical Cancer dataset in the UCI Machine Learning Repository with an imbalanced data distribution of 95% negative class and 5% positive class. ADASYN method was chosen for its ability to handle imbalanced data by focusing on minority data points that are difficult to classify. The Random Forest algorithm was optimized using GridSearchCV to achieve maximum performance. Results show that this combination improved accuracy from 96.5% to 96.8% and recall from 93.7% to 94.3%. Feature importance analysis identified key risk factors such as number of pregnancies, age at first sexual intercourse, and hormonal contraceptive use that significantly influence diagnosis. This research demonstrates the effectiveness of combining ADASYN and Random Forest in enhancing classification performance for early cervical cancer detection.
Improving Cervical Cancer Classification Using ADASYN and Random Forest with GridSearchCV Optimization Saputra, Resha Mahardhika; Alzami, Farrikh; Pramudi, Yuventius Tyas Catur; Erawan, Lalang; Megantara, Rama Aria; Pramunendar, Ricardus Anggi; Yusuf, Moh.
Infotekmesin Vol 16 No 1 (2025): Infotekmesin: Januari 2025
Publisher : P3M Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/infotekmesin.v16i1.2552

Abstract

Cervical cancer is a leading cause of death among women, with over 300,000 deaths recorded in 2020. This study aims to improve the accuracy of cervical cancer diagnosis classification through a combination of Adaptive Synthetic Sampling (ADASYN) and Random Forest algorithm. The research data was obtained from the Cervical Cancer dataset in the UCI Machine Learning Repository with an imbalanced data distribution of 95% negative class and 5% positive class. ADASYN method was chosen for its ability to handle imbalanced data by focusing on minority data points that are difficult to classify. The Random Forest algorithm was optimized using GridSearchCV to achieve maximum performance. Results show that this combination improved accuracy from 96.5% to 96.8% and recall from 93.7% to 94.3%. Feature importance analysis identified key risk factors such as number of pregnancies, age at first sexual intercourse, and hormonal contraceptive use that significantly influence diagnosis. This research demonstrates the effectiveness of combining ADASYN and Random Forest in enhancing classification performance for early cervical cancer detection.
Co-Authors Abdul Syukur Abu Salam Ade Yusupa Affandy Affandy Agus Winarno, Agus Agustina, Feri Ahmad Akrom Ahmad Akrom Akrom, Ahmad Al-Azies, Harun ALI MUQODDAS Alvin, Fris Alzami, Farrikh Andi Kamaruddin Apriyanto Alhamad Arie Nugroho, Arie Arifin, Zaenal Arya Rezagama Sudrajat Azzahra, Tarissa Aura Baroroh, Nurul Bastiaans, Jessica Carmelita Catur Supriyanto Catur Supriyanto Catur Supriyanto Catur Supriyanto D, Ishak Bintang Darmawan, Aditya Aqil De Rosal Ignatius Moses Setiadi Dewi Nurdiyah Diana Aqmala Dwi Puji Prabowo Dwi Puji Prabowo Dwi Puji Prabowo, Dwi Puji Dzuha Hening Yanuarsari, Dzuha Hening Edi Noersasongko Enrico Irawan Erlin Dolphina Etika Kartikadarma Evanita Evanita, Evanita F. Alzami Fafaza, Safira Alya Fajrian Nur Adnan Fakhrurrozi Fakhrurrozi, Fakhrurrozi Farikh Al Zami Fathorazi Nur Fajri Fatkhuroji Fatkhuroji Fauzi Adi Rafrastara Fikri Diva Sambasri Fikri Diva Sambasri Firmansyah, Muhammad Ilham Go, Agnestia Agustine Djoenaidi Guruh Fajar Shidik Hamid, Maulana As’an Hartojo, James Harun Al Azies Hasan Asari Haydar, Muhammad Rifqi Fajrul Hendri Ramdan Henry Bastian, Henry I Ketut Eddy Purnama Ifan Rizqa Ika Novita Dewi Imran, Bahtiar Irham Ferdiansyah Katili Iswahyudi Iswahyudi Karim, Muh Nasirudin Karis W. Kartika, Gita khoiriya latifah Khoirunnisa, Emila Khoirur Rizky, Muhammad Ivan Kristhina Evandari Kurnia Prayoga Wicaksono Kurniawan Aji Saputra Kurniawan, Defri Kusumawati, Yupie Lalang Erawan Lesmarna, Salsabila Putri M. Arif Soeleman M. Arif Soleman Maulana, Isa Iant Megantara, Rama Aria Mira Nabila Moch Arief Soeleman Mochamad Arief Soeleman Mochamad Hariadi Moh Yusuf, Moh Moh. Arief Soeleman Moh. Yusuf Mohammad Arif Mohammad Syaifur Rohman Muhammad Naufal, Muhammad Muljono, - Muslih Muslih Muslih Muslih Noor Wahyudi Nuanza Purinsyira Nugroho, Muhammad Bayu Nur Azise Nurhindarto, Aris Nurhindarto, Aris Pergiwati, Dewi Prabowo, D.P. Pulung Nurtantio Andono Pulung Nurtantyo Andono Puri Sulistiyawati Puri Sulistiyawati Puri Sulistiyawati Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Putu Samuel Prihatmajaya R.A. Megantara Rama Aria Megantara Rama Aria Megantara Ramadhan Rakhmat Sani Ramadhani, Irfan Wahyu Ratmana, Danny Oka Riadi, Muhammad Fatah Abiyyu Rifqi Mulya Kiswanto Ritzkal, Ritzkal Rohman, Muhammad Syaifur Rony Wijanarko Rozada, Akfi Ruri Suko Basuki Santoso, Siane Saputra, Filmada Ocky Saputra, Resha Mahardhika Saraswati, Galuh Wilujeng Sasono Wibowo Sinaga, Daurat Soeleman, M. Arief Sri Winarno Stefanus Santosa Sulistyowati, Tinuk Sutini Dharma Oetomo Tamamy, Aries Jehan Teguh Tamrin Ullumudin, D.I.I Usman Sudibyo Vincent Suhartono Vincent Suhartono Vincent Suhartono Wibowo, Gentur Wahyu Nyipto Wildanil Ghozi Winarsih, Nurul Anisa Sri Yudha Tirto Pramonoaji Yuliman Purwanto Yuslena Sari, Yuslena Yuventius Tyas Catur Pramudi Zainal Arifin Hasibuan