Prediksi harga saham merupakan salah satu aspek penting dalam pengambilan keputusan investasi, karena mampu membantu investor dalam mengantisipasi risiko dan mengoptimalkan keuntungan. PT Telkom Indonesia Tbk (TLKM) merupakan salah satu emiten blue chip di Bursa Efek Indonesia yang memiliki kapitalisasi pasar besar dan likuiditas tinggi, sehingga menarik untuk dianalisis dari sisi pergerakan harga sahamnya. Penelitian ini bertujuan untuk menganalisis dan membandingkan kinerja tiga model machine learning, yaitu Linear Regression, Random Forest, dan XGBoost, dalam memprediksi harga penutupan saham TLKM berdasarkan data historis. Data yang digunakan merupakan data harga saham harian TLKM periode 7 November 2019 hingga 6 November 2024 yang diperoleh dari platform Kaggle, dengan variabel Date, Open, High, Low, Close, Adj Close, dan Volume. Tahapan penelitian meliputi pembersihan data, konversi rekayasa fitur berbasis informasi historis dan indikator teknikal seperti lag harga penutupan, moving average, volatilitas, dan return harian, serta pembagian data menjadi 80% data latih dan 20% data uji. Selanjutnya, ketiga model dibangun dan dievaluasi menggunakan metrik Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), dan koefisien determinasi (R²). Hasil pengujian menunjukkan bahwa Linear Regression memberikan kinerja paling baik dibandingkan Random Forest dan XGBoost, dengan nilai RMSE sebesar 8,13, MAE 6,15, MAPE 0,19%, dan R² 0,9997. Temuan ini mengindikasikan bahwa pada data saham TLKM dengan pola pergerakan yang relatif stabil, model linear sederhana masih mampu memberikan akurasi prediksi jangka pendek yang sangat tinggi dan dapat dijadikan alternatif yang efektif dibandingkan model ensemble yang lebih kompleks. .