Claim Missing Document
Check
Articles

PROFIL SISWA BERKEMAMPUAN MATEMATIKA TINGGI DALAM MEMECAHKAN SOAL CERITA POKOK BAHASAN ARITMATIKA SOSIAL Kamila Duwi Fatmawati; Dinawati Trapsilasiwi; Erfan Yudianto
Saintifika Vol 22 No 2 (2020)
Publisher : Jurusan Pendidikan MIPA FKIP Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/saintifika.v22i2.15950

Abstract

Profil pemecahan masalah merupakan gambaran secara umum mengenai kegiatan memecahkan masalah matematika yang dilakukan oleh siswa dengan menggunakan lima tahapan pemecahan masalah model IDEAL, yaitu mengidentifikasi masalah, mendefinisikan masalah, mencari solusi, melaksanakan strategi, dan mengkaji kembali serta mengevaluasi pengaruhnya. Hal tersebut menjadi menarik ketika dikaitkan dengan kemampuan matematika. Penelitian ini bertujuan untuk mendeskripsikan profil siswa berkemampuan matematika tinggi dalam memecahkan soal cerita pokok bahasan Aritmatika Sosial. Jenis penelitian ini adalah penelitian kualitatif. Siswa berkemampuan matematika tinggi diberi dua soal tes pemecahan masalah, kemudian dilakukan wawancara untuk mengetahui lebih dalam proses dalam memecahkannya. Hasil yang diperoleh adalah siswa berkemampuan matematika tinggi mampu memenuhi semua indikator dari setiap tahap pemecahan model IDEAL. Hal ini terlihat dari hasil pekerjaan yang diberikan dan wawancara yang dilakukan oleh peneliti terhadap siswa tersebut.
TEMUAN MENARIK HASIL EKSPLORASI ETNOMATEMATIKA PADA BATIK GAJAH OLING BERDASARKAN KONSEP GEOMETRIS Karimah Salasari; Titik Sugiarti; Erfan Yudianto; Toto' Bara Setiawan; Dinawati Trapsilasiwi
Saintifika Vol 21 No 1 (2019)
Publisher : Jurusan Pendidikan MIPA FKIP Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/saintifika.v21i1.9948

Abstract

Abstract. Ethnomatematics as link between culture and mathematics is a multicultural mathematical activity that uses culture in making connections with mathematics topics so as to motivate students to preserve their own culture while learning mathematics. The purpose of this reasearch are to explore ethnomathematics in Gajah Oling’s batik based on geometric concepts. The type of reaserch is qualitative with an ethnographic approach. Data collection methods used are observation and interviews. The subject of this reasearch is a design maker Gajah Oling’s batik. This research focuses on intersesting discovery from the exploration results, that is making pattern of Gajah Oling’s batik shirt. In the process of making pattern of Gajah Oling’s shirt, ethnomathematics seen on design and measuring activities. In desiging activities geometric concepts such as translation and reflection emerge, while in measuring activities, design makers use mathematics to determine the design size so that the fabric meeded to make a shirt can be minimized as little as possible.Keywords: Ethnomatematics, cocoa farmers, culture. Keywords: Ethnomatematics, Gajah Oling’s Batik, Geometry
ANALISIS KESALAHAN SISWA DALAM MENYELESAIKAN SOAL PROGRAM LINEAR DITINJAU DARI ADVERSITY QUOTIENT Finlantya Elsa Hutami; Dinawati Trapsilasiwi; Randi Pratama Murtikusuma
Alifmatika (Jurnal pendidikan dan pembelajaran Matematika) Vol 2 No 1 (2020): Alifmatika - June
Publisher : Fakultas Tarbiyah Universitas Ibrahimy

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (736.763 KB) | DOI: 10.35316/alifmatika.2020.v2i1.1-13

Abstract

This research aims to analyze student’s error types in solving linear programming problems based on Newman’s error analysis viewed from Adversity Quotient (AQ). This research approach is qualitative descriptive. Subjects in this research are 6 students in class X TKR 3 of SMKN 2 Jember. There are 2 climber students, 2 camper students, and 2 quitter students. Instruments that were used in this research to collect the data are ARP questionnaire, linear programming problem, interview guide, and validation sheets. Based on the result of this research, the climber students are able to do comprehension error, process skill error, and encoding error. The camper students are able to do comprehension error, transformation error, process skill error, and encoding error. The quitter students are able to do reading error, comprehension error, transformation error, process skill error, and encoding error.
KEMAMPUAN BERPIKIR KRITIS SISWA SMP DALAM MENYELESAIKAN MASALAH MATEMATIKA DITINJAU DARI ADVERSITY QUOTIENT (AQ) Ivent Astiantari; Didik Sugeng Pambudi; Ervin Oktavianingtyas; Dinawati Trapsilasiwi; Randi Pratama Murtikusuma
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 11, No 2 (2022)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (785.227 KB) | DOI: 10.24127/ajpm.v11i2.5073

Abstract

AbstrakKemampuan berpikir kritis dengan tahapan focus, reason, inference, situation, clarity, dan overview serta kemampuan daya juang (adversity quotient) memiliki peranan sangat penting dalam aktivitas memecahkan masalah matematika. Penelitian ini bertujuan untuk mendeskripsikan kemampuan berpikir kritis siswa dalam menyelesaikan masalah ditinjau dari adversity quotient (AQ). Penelitian deskriptif kualitatif ini dilakukan di sebuah SMP di Jember, Indonesia, pada bulan September 2021. Pengumpulan data menggunakan metode angket Adversity Response Profile (ARP), tes tertulis berpikir kritis, serta wawancara. Hasil pemberian angket ARP kepada 31 siswa kelas IXB, diketahui ada 10 siswa dengan tipe climber, 18 siswa dengan tipe camper, dan 3 siswa dengan tipe quitter. Dari tipe AQ tersebut dipilih enam siswa dengan 2 siswa tipe climber, 2 siswa tipe camper, dan 2 siswa tipe quitter untuk mengikuti tes tertulis dan wawancara. Triangulasi menggunakan triangulasi metode, yaitu mencari kesesuaian antara data dari hasil tes tertulis dengan wawancara. Hasil penelitian menunjukkan bahwa siswa dengan tipe climber memenuhi seluruh kriteria berpikir kritis FRISCO, yaitu focus, reason, inference, situation, clarity, dan overview. Siswa dengan tipe climber mampu menyelesaikan permasalahan yang diberikan dengan tepat waktu dan mengecek kembali jawaban. Siswa dengan tipe camper dapat memenuhi 5 dari 6 kriteria berpikir kritis FRISCO, yaitu focus, reason, inference, situation dan clarity. Siswa dengan tipe camper mampu menyelesaikan permasalahan yang diberikan tepat waktu. Kekurangannya adalah siswa camper tidak melakukan overview, yaitu tidak mengecek kembali jawaban sesudah menyelesaikan masalah. Adapun siswa dengan tipe quitter hanya mampu memenuhi 2 dari 6 kriteria berpikir kritis FRISCO, yaitu mereka hanya mampu melakukan focus, dan clarity, serta kesulitan memahami permasalahan sehingga tidak dapat menyelesaikan masalah tersebut. Dari hasil ini, maka guru perlu memberikan motivasi kepada siswa untuk mempunyai daya juang tinggi agar memiliki kemampuan berpikir kritis tinggi dalam memecahkan masalah matematika.AbstractCritical thinking skills which include the stages of focus, reason, inference, situation, clarity, and overview as well as the ability to fight (adversity quotient) have a very important role in solving mathematical problems. This study aims to describe students' critical thinking skills in solving problems in terms of the adversity quotient (AQ). This descriptive qualitative research was conducted at a junior high school in Jember, Indonesia, in September 2021. The data was collected using the Adversity Response Profile (ARP) questionnaire, a written critical thinking test, and interviews. The results of giving ARP questionnaires to 31 students of class IXB, it is known that there are 10 students with the climber type, 18 students with the camper type, and 3 students with the quitter type. From the AQ type, six students were selected with 2 climber type students, 2 camper type students, and 2 quitter type students to take written tests and interviews. Triangulation uses the triangulation method, which is to find a match between the data from the results of the written test and the interview. The results showed that the climber type students met all of the FRISCO critical thinking criteria, namely focus, reason, inference, situation, clarity, and overview. Students with the climber type are able to solve the problems given in a timely manner and recheck the answers. Camper type students can fulfill 5 of 6 FRISCO critical thinking criteria, namely focus, reason, inference, situation and clarity. Camper type students are able to solve the problems given on time. The drawback is that camper students do not do an overview, that is, they do not re-check the answers after solving the problem. As for students with the quitter type, they are only able to meet 2 of the 6 criteria for FRISCO critical thinking, namely they are only able to focus and clarity, and have difficulty understanding problems so they cannot solve the problems. From these results, the teacher needs to motivate students to have a high adversity quotient in order to have high critical thinking skills in solving mathematical problems. Keywords: Adversity Quotient, Critical Thinking, Mathematical Problem Solving.
Analisis Keterampilan Geometri Siswa dalam Menyelesaikan Masalah Transformasi Geometri yang Berkaitan dengan Etnomatematika di Taman Nasional Alas Purwo Brigita Wanda Pangestika; Susanto Susanto; Lela Nur Safrida; Dinawati Trapsilasiwi; Lioni Anka Monalisa
EDUKATIF : JURNAL ILMU PENDIDIKAN Vol 4, No 4 (2022)
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/edukatif.v4i4.2857

Abstract

Tanpa disadari matematika mempunyai peran yang cukup penting dalam kebudayaan misalnya dalam mempengaruhi konstruksi budaya manusia. Oleh karena itu perlu adanya keterkaitan budaya dalam pembelajaran matematika di sekolah. Berdasarkan kondisi tersebut penelitian ini bertujuan untuk mengetahui keterampilan geometri siswa dalam menyelesaikan masalah transformasi geometri yang berkaitan dengan etnomatematika di Pura Luhur Giri Salaka yang terletak di kawasan Taman Nasional Alas Purwo. Keterampilan geometri yang harus dipenuhi siswa adalah keterampilan visual, verbal, menggambar, logika dan terapan. Penelitian ini merupakan penelitian deskriptif kualitatif dengan subjek penelitian siswa kelas XI SMA Negeri 1 Purwoharjo. Metode pengumpulan data menggunakan metode tes dan metode wawancara. Berdasarkan hasil analisis data dapat disimpulkan bahwa kecenderungan subjek penelitian hanya memenuhi tiga keterampilan geometri yakni keterampilan visual, logika dan terapan. Kecenderungan siswa mampu memenuhi indikator keterampilan visual. Keterampilan verbal hanya dipenuhi siswa pada saat wawancara berlangsung. Keterampilan menggambar hanya dipenuhi siswa pada soal nomor 2. Siswa dengan keterampilan logika akan mudah untuk menerapkan konsep geometri terhadap suatu objek nyata dan mampu memenuhi indikator keterampilan terapan.
Analysis of Student’s Mathematical Reasoning in terms of Learning Independence During Distance Learning Nuzula Erlisa Nuraziza; Susanto Susanto; Abi Suwito; Dinawati Trapsilasiwi; Reza Ambarwati
Journal of Education and Learning Mathematics Research (JELMaR) Vol 3 No 1 (2022): Mei 2022
Publisher : Department of Mathematics Education, Faculty of Teacher Training and Education, Wisnuwardhana University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37303/jelmar.v3i1.67

Abstract

Mathematical reasoning is the student’s ability to think logically regarding mathematics problems. The indicators of mathematical reasoning used in this study are presenting statements mathematically, performing mathematical manipulations, compiling the proofs for the truth of solutions, and drawing conclusions from statements presented. This study used qualitative research methods and aims to describe the students' mathematical reasoning abilities for the subject of Three Dimensions, reviewed by their learning independence during Distance Learning. This research was conducted at SMAN 1 Pasuruan class XII MIPA 1 for the 2021/2022 academic year. The instruments used in this study are learning independence questionnaires, mathematical reasoning ability tests, and guides for the interview. The results showed that 21 students can be categorized into Medium Level in terms of their learning independence, and 14 students can be categorized into High Level in terms of their learning independence. Students who have medium learning independence showed medium and low mathematical reasoning abilities. Students are able to solve problems by fulfilling two indicators of mathematical reasoning ability. On the other hand, students with high learning independence showed high mathematical reasoning abilities. Students are able to solve problems by fulfilling all indicators of mathematical reasoning abilities.
Analysis of Geometry Problem Solving Based on APOS Theory for Class IX Students Fina Mifta Vebianti; Sunardi Sunardi; Abi Suwito; Dinawati Trapsilasiwi; Ervin Oktavianingtyas
Journal of Education and Learning Mathematics Research (JELMaR) Vol 3 No 1 (2022): Mei 2022
Publisher : Department of Mathematics Education, Faculty of Teacher Training and Education, Wisnuwardhana University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37303/jelmar.v3i1.69

Abstract

This study aims to describe students geometry problem solving abilities based on APOS theory in terms of field dependent and field independent cognitive styles. This type of research is descriptive research with a qualitative approach. The research subjects were 4 students of class IX SMPN 1 Jember which were grouped based on cognitive style, namely 2 students with field independent cognitive style and 2 students with field dependent cognitive style. Methods of data collection using problem solving tests and interviews. The results of data analysis show that FD students tend to be able to write and mention information in questions, but still have difficulty in explaining the meaning of the questions. FI students tend to be able to write and explain information on questions. At the process stage, FI and FD students were able to model and explain the stages well, but FD still had errors in changing the shape of the mathematical model correctly. At the object stage, FI students work on questions freely, while FD students work on questions in detail or fixate on structured steps, FD students also have difficulty explaining their work. At the schema stage, FI and FD students can explain how to use the information in the problem, but FD students still experience errors from the process stage to drawing conclusions as a solution. Field independent students tend to be free or not fixated on complete and detailed steps, while field dependent students tend to be bound or fixated on complete and detailed steps.
Ethnomathematics Of Tumpeng And Banyuwangi Tumpeng Sewu Rituals As Students’ Worksheets Faiqotul Himmah; Toto’ Bara Setiawan; Lioni Anka Monalisa; Didik Sugeng Pambudi; Dinawati Trapsilasiwi
Pancaran Pendidikan Vol 8, No 1 (2019)
Publisher : The Faculty of Teacher Training and Education The University of Jember Jember, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (837.115 KB) | DOI: 10.25037/pancaran.v8i1.220

Abstract

Mathematics is very closely related to the habits that exist in society. The habits that exist in society can be called a culture. The concept or aspect of mathematics related to culture is called ethnomathematics. Ethnomathematics can also be used as teaching materials that can attract students' interest in mathematics, because students will find it easier to learn science that is directly related to real life. Thus, ethnomathematics is very important in mathematics learning activities so students can learn between mathematics and culture, and know the cultural activities that exist in the surrounding community. In this study, the ethnomathematics of the tumpeng and the Tumpeng Sewu Banyuwangi ritual, which is one of the cultures in Indonesia, will be described as well as utilizing the results of their research into ethnomathematic Students’ Worksheets (LKS). Ethnomathematics obtained are activities of counting, counting, and measuring, as well as some mathematical concepts such as algebra, arithmetic, and geometry.
Pelatihan Penyusunan Soal Berfikir Tingkat Tinggi bagi Guru-Guru Matematika SMA di Jember Didik Sugeng Pambudi; Reza Ambarwati; Dinawati Trapsilasiwi; Erfan Yudianto
Dinamisia : Jurnal Pengabdian Kepada Masyarakat Vol. 6 No. 6 (2022): Dinamisia: Jurnal Pengabdian Kepada Masyarakat
Publisher : Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/dinamisia.v6i6.5505

Abstract

One of the problems that occur in mathematical subjects was the ability for students to solve problems that need the Higher Order Thinking Skills (HOTS) still low. This problem also occurs in high school students (SMA) in Jember. The cause of the problem was that the mathematics teacher has not been skilled in making HOTS problems and has not guided students to solve HOTS problems. To overcome this problem, training activities followed by 118 high School Mathematics teachers held on 02 February 2019 at the center of MGMP (Teachers' discussion group) in Jember. The methods used were sharing information, discussions, and assignments to made HOTS mathematical problems, observation, test, and giving questioner. The results gained were the teacher's knowledge of the HOTS problem increasing from the average score of pretest 62 to the average score of posttest 85. The teacher's ability to make HOTS problems was already in good category, and all participants (100%) actively participate in training activities and give positive responses to the activity. The community services activity need to be continued in the future, because it is very important for improving teachers’ professionalism.
PROFIL SISWA BERKEMAMPUAN MATEMATIKA TINGGI DALAM MEMECAHKAN SOAL CERITA POKOK BAHASAN ARITMATIKA SOSIAL Kamila Duwi Fatmawati; Dinawati Trapsilasiwi; Erfan Yudianto
saintifika Vol 22 No 2 (2020)
Publisher : FKIP Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (353.39 KB)

Abstract

Profil pemecahan masalah merupakan gambaran secara umum mengenai kegiatan memecahkan masalah matematika yang dilakukan oleh siswa dengan menggunakan lima tahapan pemecahan masalah model IDEAL, yaitu mengidentifikasi masalah, mendefinisikan masalah, mencari solusi, melaksanakan strategi, dan mengkaji kembali serta mengevaluasi pengaruhnya. Hal tersebut menjadi menarik ketika dikaitkan dengan kemampuan matematika. Penelitian ini bertujuan untuk mendeskripsikan profil siswa berkemampuan matematika tinggi dalam memecahkan soal cerita pokok bahasan Aritmatika Sosial. Jenis penelitian ini adalah penelitian kualitatif. Siswa berkemampuan matematika tinggi diberi dua soal tes pemecahan masalah, kemudian dilakukan wawancara untuk mengetahui lebih dalam proses dalam memecahkannya. Hasil yang diperoleh adalah siswa berkemampuan matematika tinggi mampu memenuhi semua indikator dari setiap tahap pemecahan model IDEAL. Hal ini terlihat dari hasil pekerjaan yang diberikan dan wawancara yang dilakukan oleh peneliti terhadap siswa tersebut.
Co-Authors Abdur Rahman As’ari Abdur Rouf, Abdur Abi Suwito Afifi, Rizky Nur Agustin Faridatul Hasanah Agustiningtyas, Iin Triana Agustya Hardy Ahmad Rif’an Fawaid Ahmad Zainuri Aini, Novi Rosidatul Alim, Fathul Alvian Agung K Ambarwati, Reza Andriana, Lutfi Anjani, Diva Setyo Aprilia, Erly Dwi Aprilia, Nahda Cindy Ardiansyah, Kamal Arif Fatahillah Arifatul Hasanah Arika Indah Kristiana Arika Indah Kristiani Arum Wisnanti Asviangga, Aji Bagoes Ati’ah, Siti Atmadji, Novie Kurnia Putri Aulia, Kharisma Bambang Suharjito Banina Firdaus, Banina Brigita Wanda Pangestika Desi Indriyani Desi Indriyani Desi Wahyuningtyas Desy Nurjannah Devi Anggraeni Pratiwi Devi Anggraeni Pratiwi Dewi, Miya Ayu Kumala Dian Kurniati Didik S. Pambudi Didik Sugeng Pambudi Didik Sugeng Pambudi Dina Frensista Dzurratul Wasi’ah N.L.H Eko Gunariyanto Erfan Yudianto Erina Tri Puspitasari Ervin Oktavianingtyas Faiqotul Himmah Faradina, Apriliana Tezha Eka fatmawati, kamila duwi Fawaid, Ahmad Rif’an Fenni Octavianti Fina Mifta Vebianti Finlantya Elsa Hutami Fitri, Nurul Fonda Essa Habiba, Fonda Essa Girlda Elynikie B, Girlda Elynikie Guswanto, Ervin Hasan Basri Hasan Basri Hasan, Ayu Zulfiah Hendriyati, Nofiela Nuning Hobri I Gede Beni Icha Shofia Karlita Ulfa IDA RAHMAWATI Ika Rahmi Irma Khoirul Ummah, Irma Khoirul Ivent Astiantari Jannatul Khoiriyah Jatmiko, Dhanar Dwi Jatmiko, Dhanar Dwi Hari Jatmiko, Dhanar Dwi Hary Jhahro, Kholif Fatujs Joli Hanafi A Kamila Duwi Fatmawati Kamila Duwi Fatmawati Kamilia, Itriyatut Diana Karimah Salasari Karimah Salasari Kiki Nurhadiyanti, Kiki Kusumaningtyas, Nastiti Latifa, Siti Lestari, Nurcholif Diah Sri Lina Anggraini Linda Fitasari, Linda Lioni Anka Monalisa, Lioni Anka Maharani Gita K Mahfudhoh, Rif’atul Mardiana, Nanda Putri Masruri, Muslih Mauhibatul Khoroid Maulina Syamsu Widyaharti, Maulina Syamsu Millah Kusumawaty N.L.H, Dzurratul Wasi’ah Nancy Yunita Susanti, Nancy Yunita Neni Ristiana Nila Lestari Nila Lestari Ninik Dwi N Nisyak, Robiatun Novi Dwi Lestari Nur Aini Nur Indah Sofia Nurcholif Diah Nurcholif Diah Sri L. Nurcholif Diah Sri Lestari Nurfiani, Merlin Nurul Afisa NURUL ANNISA Nurul Mahmudah, Nurul Nuzula Erlisa Nuraziza Osman, Sharifah panglipur, indah rahayu Pratika Maharani Pratika Maharani pratiwi, devi anggraeni Putra, Rizki Cahya Eka Putri, Inge Wiliandani Setya Rachmawati, Fitri Kurnia Rahmawati, Mira Randi Pratama Murtikusuma Retno Nur Khasanah Reza Ambarwati Rijadi, Arief Rini Ayuning Tyas, Rini Ayuning Rizky Maulidiyah, Rizky Rohadatul Aisy, Fairuz Aufa Rusdiyana, Erine S Slamin S Suharto S Sunardi S Supriyono S Susanto Saddam Hussen Sandhi, Niluh Shindi Aprilia Santoso, Mutiara Winda Saputri, Risma Rintias Saukiyah, Sitti Setyowati, Henny Sharifah Osman Shofiah, Ulfatus Sholikhah, Mar’atus Siti Ati’ah Siti Nurhayati Suci Rohmatul Hidayah, Suci Rohmatul Suharjono, Gilang Eko Setyo Suhatini, Percoyo Unggul Sunardi Sunardi sunardi sunardi Sunardi Sunardi Sunardi, Sunardi Susanto Susanto Susanto Susanto Susanto Susanto Susanto Susanto Susi Setiawani Titik Sugiarti Titis Rini Chandrasari, Titis Rini Toto Bara Setiawan Trapsilo Prihandono Tyas, Dyte Meining Utomo, Via Okta Yudha Y. Danni Prihartanto Zainul Arifin