Articles
Perencanaan dan Implementasi Optical Distribution Point Dua Kompartemen Untuk Meningkatkan Performansi Jaringan Fiber Optik
Komang Agus Putra Kardiyasa;
Nyoman Gunantara;
Made Sudarma
Jurnal Teknologi Elektro Vol 23 No 1 (2024): (Januari - Juni ) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24843/MITE.2024.v23i01.P07
This research addresses challenges in the Optical Distribution Point (ODP) in fiber optic networks, starting with identifying issues affecting network performance. The study emphasizes the importance of reliable ODPs in enhancing overall network efficiency. Through careful planning and evaluation, this research focuses on designing a two-compartment ODP system. The research findings highlight that robust ODPs positively impact network performance by improving signal quality, transmission speed, and overall reliability. The study also explores the economic feasibility of implementing this system, ensuring that the proposed ODP solution is not only technically superior but also cost-effective based on feedback from 360 respondents, stating that the 2-Compartment ODP device can reduce operational costs and network infrastructure maintenance. This research provides valuable insights into the field of optical fiber communication, laying the groundwork for future advancements in network planning and infrastructure, ultimately aiming to optimize the performance of fiber optic access networks.
Penerapan Metode Clustering Text Mining Untuk Pengelompokan Berita Pada Unstructured Textual Data
Nyoman Gede Yudiarta;
Made Sudarma;
Wayan Gede Ariastina
Jurnal Teknologi Elektro Vol 17 No 3 (2018): (September - Desember) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24843/MITE.2018.v17i03.P06
Good governance was a government whose programs were known and beneficial to the people. In Bali Provincial Government which has duty in disseminating information is Bureau of Public Relations Regional Secretariat Bali through media owned. Because at the time of news input to the media in this case Public Relations Bureau website was not included causing the emergence of problems in the form of difficulty knowing the news, which news that goes into certain categories. Clustering was a method to solve the problem. One of the algorithms used in the Clustering method is the K-Means algorithm. This study focused on designing to classify news data into a category using K-Means. To process the documents obtained to make it easier in the process of clustering, was done by preprocess documents first. Document preparation consists of case folding, tokenization, filtering and stemming. Tf-Idf was done to pass the weighting of the terms obtained on the preprocessed documents. From the results of experiments conducted using different amounts of data that are 50, 100, 200, 300, 400, and 500 data obtained results that the K-Means algorithm applied to cluster news, able to work and provide a satisfactory accuracy, Precision average of 73.11% while Recall of 69.65% and Purity of 0.80 for all test data. When viewed the comparison of each test data, the test on 50 data has the highest average precision and recall rate of 76.92% for its precision and for its recall of 79.58% while for Purity its highest value is on testing 300 data that is equal to 0.83.
Implementasi Algoritma FP-Growth dengan Closure Table untuk Penemuan Frequent Itemset pada Keranjang Belanja
I Gusti Agung Indrawan;
Made Sudarma;
Lie Jasa
Jurnal Teknologi Elektro Vol 17 No 2 (2018): (May - Agustus) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24843/MITE.2018.v17i02.P06
Algoritma FP-growth adalah algoritma data mining yang digunakan untuk menemukan frequent itemset pada data keranjang belanja. Frequent itemset adalah kelompok barang yang sering dibeli bersamaan dalam satu keranjang belanja. Analisa frequent itemset akan menghasilkan aturan asosiasi. Algoritma FP-growth menemukan frequent itemset dengan mengkompresi data keranjang belanja ke struktur data tree yang disebut FP-tree. FP-tree kemudian dianalisa untuk mengekstrak frequent itemset. Data keranjang belanja selalu bertambah jumlahnya untuk setiap transaksi yang terjadi, sehingga proses penemuan frequent itemset akan membuat FP-tree dari awal secara berulang-ulang setiap kali algoritma FP-growth dijalankan. Agar FP-tree tidak perlu dibuat ulang dari awal setiap kali algoritma FP-growth dijalankan, maka FP-tree perlu disimpan pada media penyimpanan menggunakan format yang sesuai dengan struktur data tree. Penelitian ini menyimpan FP-tree ke tabel pada database dengan struktur closure table. Struktur closure table memiliki beberapa keunggulan sehingga cocok digunakan untuk menyimpan struktur data tree.
Segmentasi Tumor Otak Berdasarkan Citra Magnetic Resonance Imaging Dengan Menggunakan Metode U-NET
Ida Bagus Leo Mahadya Suta;
Made Sudarma;
I Nyoman Satya Kumara
Jurnal Teknologi Elektro Vol 19 No 2 (2020): (Juli - Desember) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24843/MITE.2020.v19i02.P05
Brain tumor is a deadly disease where 3.7% per 100,000 patients have malignant tumors. To analyze brain tumors can be done through magnetic resonance imaging (MRI) image segmentation. Automatic image analysis process is needed to save time and improve accuracy of doctor diagnoses. Automatic segmentation can be done with deep learning. U-NET is one of the methods used to segment medical images because it works at pixel level. By applying the ReLU and Adam Optimizer activation function, this method can solve the problem of segmenting brain tumors. Dataset for the training and validation process using BRATS 2017. Several hyperparameters are applied to this method: learning rate (lr) = 0.0001, batch size (bz) = 5, epoch = 80 and beta (b_1) = 0.9. From a series of processes carried out, accuracy of the U-NET method is calculated by Dice Coefficient formula and results in following accuracy values, during training of 90.22% (Full Tumor), 78.09% (Core Tumor) dan 80.20% (Enhancing Tumor).
Sistem Monitoring dan Kontrol Tangki Air Menggunakan Raspberry Pi Berbasis Bot Telegram
Lanang Bagus Amertha;
Rukmi Sari Hartati;
Made Sudarma
Jurnal Teknologi Elektro Vol 21 No 2 (2022): (Juli - Desember) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24843/MITE.2022.v21i02.P02
Water tanks are often placed at a height to take advantage of the force of gravity so that water can flow optimally. The high position of the water tank is difficult for users to find out the quality and volume of water. Poor water quality such as experiencing turbidity can have a bad impact. So we need a system that can detect turbidity and water volume and can inform users remotely. The technology that can be used is the internet of things. The system built will monitor the turbidity and volume of the user's water tank, as well as control the pump in the form of turning it on and off. The interaction process between users and the system using bots from Telegram. The test results of the system can monitor turbidity and water volume and control the water pump through interaction with users using Telegram bots. The test results show the average speed of the entire system process is 1.48 seconds. The use of Raspberry Pi microcontroller can be used for future system development such as adding cloudy water treatment process features or others. Another development suggestion by adding bots as an interface from other instant messaging applications.
Desain Sistem Semantic Data Warehouse dengan Metode Ontology dan Rule Based untuk Mengolah Data Akademik Universitas XYZ di Bali
Made Pradnyana Ambara;
Made Sudarma;
I Nyoman Satya Kumara
Jurnal Teknologi Elektro Vol 15 No 1 (2016): (January - June) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24843/MITE.2016.v15i01p02
Data warehouse pada umumnya yang sering dikenal data warehouse tradisional mempunyai beberapa kelemahan yang mengakibatkan kualitas data yang dihasilkan tidak spesifik dan efektif. Sistem semantic data warehouse merupakan solusi untuk menangani permasalahan pada data warehouse tradisional dengan kelebihan antara lain: manajeman kualitas data yang spesifik dengan format data seragam untuk mendukung laporan OLAP yang baik, dan performance pencarian informasi yang lebih efektif dengan kata kunci bahasa alami. Pemodelan sistem semantic data warehouse menggunakan metode ontology menghasilkan model resource description framework schema (RDFS) logic yang akan ditransformasikan menjadi snowflake schema. Laporan akademik yang dibutuhkan dihasilkan melalui metode nine step Kimball dan pencarian semantic menggunakan metode rule based. Pengujian dilakukan menggunakan dua metode uji yaitu pengujian dengan black box testing dan angket kuesioner cheklist. Dari hasil penelitian ini dapat disimpulkan bahwa sistem semantic data warehouse dapat membantu proses pengolahan data akademik yang menghasilkan laporan yang berkualitas untuk mendukung proses pengambilan keputusan. DOI: 10.24843/MITE.1501.02
Komputasi Paralel Menggunakan Model Message Passing Pada SIM RS (Sistem Informasi Manajemen Rumah Sakit)
I Putu Adi Pradnyana Wibawa;
IA Dwi Giriantari;
Made Sudarma
Jurnal Teknologi Elektro Vol 17 No 3 (2018): (September - Desember) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24843/MITE.2018.v17i03.P20
Semakin berkembangnya teknologi akan berdampak pada pertumbuhan data yang pesat hingga melampaui batas kemampuan database manajemen tools yang ada. Salah satu sistem yang memiliki jumlah dan jenis data yang cukup besar adalah SIM RS (Sistem Informasi Manajemen Rumah Sakit). HPC (High Performance Computing) merupakan metode untuk mengatasi permasalahan yang memiliki kompleksitas tinggi terkait dengan beban pekerjaan dan penggunaan banyak data. Salah satu teknik yang digunakan dalam metode HPC adalah Komputasi Paralel. Penelitian ini berfokus pada perancangan komputasi paralel menggunakan model message-passing pada proses pencarian data pasien pada SIM RS. Komputasi paralel didesain dengan cara membagi data atau pekerjaan (komputasi) ke sejumlah komputer/CPU (master dan slave). Konfigurasi komputasi paralel pada komputer/CPU master dan slave menggunakan tahapan pada metode Foster yaitu Partisi, Komunikasi, Aglomerasi dan Pemetaan. Pengujian akan dilakukan dengan membandingkan waktu pengolahan data pasien antara sekuensial dan paralel. Selain itu komputasi paralel dirancang akan diuji menggunakan perhitungan Speed Up dan Efisieinsi. Hasil perancangan dan pengujian komputasi paralel menggunakan model message-passing membuktikan bahwa waktu pengolahan data pasien menggunakan program paralel mampu lebih cepat dibandingkan pengolahan data menggunakan topologi jaringan sekuensial/1 komputer/CPU. Pada pengujian speed up menunjukan adanya peningkatan kecepatan sampai pada penggunaan komputasi paralel pada 3 komputer/CPU. Sedangkan pada pengujian efisiensi nilai efisiensi tertinggi terdapat pada penggunaan 2 dan 3 komputer/CPU. Terjadinya penurunan nilai speed up dan efisiensi diakibatkan oleh jumlah data yang tergolong sedikit apabila ditangani oleh komputasi paralel menggunakan 7 komputer/CPU. Jadi semakin banyak jumlah komputer/CPU yang dilibatkan dalam komputasi paralel pada saat melakukan pemrosesan/pengolahan data, tidak berbanding lurus dengan waktu yang dibutuhkan dalam pemrosesan/ pengolahan data tersebut. Hal ini dikarenakan sebuah pekerjaan pemrosesan/pengolahan data dalam hal jumlah data yang ditangani memiliki batas ideal jumlah komputer/CPU yang menangani pekerjaan tersebut.
Ekstraksi Fitur Warna, Tekstur dan Bentuk untuk Clustered-Based Retrieval of Images (CLUE)
I Gusti Rai Agung Sugiartha;
Made Sudarma;
I Made Oka Widyantara
Jurnal Teknologi Elektro Vol 16 No 1 (2017): (January - April) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
Picture (image) is a media that used for storing visual data, for example, two-dimensional images are often used to store an incident. Images on the internet media growth very rapidly. There are a lot of image, video, text or other content on the Internet. Image Index and image retrieval again become a topic of research in the last decade in which concentrated on how to get the meaning of an information contained in an image. Three methods outlined in the search for an image, the text-based image retrieval, content-based image retrieval and indexing images in the order of language. This study focuses on the preparation of the features of an image based on color and texture. Features colors using the average value of Hue image, texture features using Gray Level occurance Matrix (GLCM). Color, texture, and shape extraction technique resulted in eighteen (18) feature that can be used as features in the process of Clustering.DOI: 10.24843/MITE.1601.12
Analisis dan Perancangan Sistem Pengelola Data Menuju Implementasi Data Warehouse Untuk Mendukung Administrasi E-Procurement
I Gusti Ngurah Adhy Pradhana;
I.A.D Giriantari;
Made Sudarma
Jurnal Teknologi Elektro Vol 17 No 2 (2018): (May - Agustus) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24843/MITE.2018.v17i02.P12
Abstract— ULP (Procurement Unit) Udayana University is an institution that organizes the procurement process of Goods/ Services within Udayana University, that includes procurement planning, procurement implementation and reporting of the procurement. This study resulted in a data warehouse application that can summarize, integrate historical data and present information from various dimensions that assist stakeholders in analyzing their policy strategies. Information generated from data warehouse will make it easy for reporting of Goods/Services Procurement at Udayana University to summarize the data and also enable stakeholders to view their data from various dimensions. Data warehouse is designed to facilitate the organization in obtaining information for further analysis and can also be a reference in developing other applications. Data warehouse modeling that has built names SIGAP, which has proven to successfully improve the performance of government goods procurement information system in Udayana University. The improvement is the speed and accurity in finding procurement report for stakeholders or other user. This is measured from the feasibility test of the system which showed in satisfaction score for efficiency is 4.31 out of 5.00. This shows that stakeholders or user can get procurement reports faster using SIGAP application than usual method.
User Experience Analysis Of "Ayooklik.Com" Online Store Using Use Questionnaire In Determining Product Segmentation
Philipus Novenando Mamang Weking;
Made Sudarma;
Komang Oka Saputra
Jurnal Teknologi Elektro Vol 19 No 1 (2020): (Januari - Juni ) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.24843/MITE.2020.v19i01.P03
Over time, the market function of the convention has now developed into an updated market namely Online Store. Online Store Business is currently supported by a marketing strategy called Product Segmentation. In the implementation of the marketing strategy, sometimes it is not in a position to satisfy all their customers at any time because not all requirements of every customer can be fulfilled by the Online Store company. To answer this problem, a solution that can be offered to solve the problem is to carry out the usability analysis process of the Ayooklik.com online store system in determining Product Segmentation. The results showed that Ayooklik.com customers were satisfied because the Ayooklik.com system was easy to learn so product needs were even greater. The high and low usability of the Ayooklik.com system affects the price of a product sold.