Claim Missing Document
Check
Articles

ANALISIS PENGARUH JARAK ANTAR SIRIP DAN LAJU ALIRAN TERHADAP KOEFISIEN PERPINDAHAN KALOR PADA ALAT PENUKAR KALOR PIPA GANDA Khoirudin, Khoirudin; Mulyadi, Dodi; Rahdiana, Nana
Conference on Innovation and Application of Science and Technology (CIASTECH) CIASTECH 2020 "Peranan Strategis Teknologi Dalam Kehidupan di Era New Normal"
Publisher : Universitas Widyagama Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini bertujuan untuk mengetahui pengaruh jarak antar sirip, laju aliran dalam, dan laju aliran luar terhadap koefisien perpindahan kalor menyeluruh pada alat penukar kalor pipa ganda. Penelitian ini menggunakan dua pipa, yaitu pipa tembaga 1/2 inch yang dialiri air panas dan pipa alumunium 1 inch yang dialiri air dingin. Populasi yang digunakan dalam penelitian ini adalah pipa bersirip enam jarum dengan variasi jarak antar sirip 10 mm, 15 mm, dan 20 mm, variasi laju aliran dalam 0,06 lt/dt, 0,08 lt/dt, 0,1 lt/dt, dan laju aliran luar 0,07 lt/dt, 0,1 lt/dt, 0,13 lt/dt. Hasil penelitian menunjukan ada perbedaan nilai perpindahan kalor dari masing-masing variasi, antara variasi jarak antar sirip, laju lairan dalam, dan laju lairan luar. Koefisien perpindahan kalor paling rendah terjadi pada interaksi pipa tanpa sirip, laju aliran dalam 0,06 lt/dt, dan laju aliran luar 0,07 lt/dt, yaitu sebesar 890,74 W/m2ËšC. Sedangkan koefisien perpindahan kalor paling tinggi terjadi pada interaksi jarak antar sirip 15 mm, laju aliran dalam 0,1 lt/dt, dan laju aliran luar 0,13 lt/dt yaitu sebesar 1784,84 W/m2ËšC.
Evaluasi Desain Bejana Bertekanan pada Radiator Cooling System Menggunakan Material SPCC-SD Sukarman, Sukarman; Khoirudin, Khoirudin; Murtalim, Murtalim; Mulyadi, Dodi; Rahdiana, Nana
Rekayasa Vol 14, No 1: April 2021
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/rekayasa.v14i1.9570

Abstract

This study discusses the analysis of a pressure vessel's design in the Radiator Cooling 1000 (RC-1000) system, which operates at a design temperature of 110oC. A pressure vessel is a container of gaseous, solid, or liquid material subjected to internal or external pressure and can withstand various other load variations. The pressure vessel on the RC-1000 system has a outer diameter of 87.8 mm or 3.46 inches and will experience an internal pressure of about 20.84 psi or 143.7 kPa, so it must be designed safely. This research method uses analytical and experimental methods. The analytical method is used to calculate the thickness of the pressure vessel material, the maximum allowable working pressure, and the hydrostatic test calculation. While the experimental method was carried out on the hydrostatic test process, the evaluation was based on the prevailing regulations in the Republic of Indonesia. Using the SPCC-SD material (JIS 3141), it was found that the minimum thickness of this pressure vessel is 0.0453 inches on the shell side and 0.0435 inches on the head/head side. The thickness of the material used on the shell side and head/head is 0.0472 inches in practice. This pressure vessel has passed the hydrostatic test at 232.1 psi or 1600 kPa.
OPTIMIZATIONS THE TENSILE-SHEAR STRENGTH OF TIG WELDING PARAMETERS FOR MILD STEEL AT DIFFERENT MATERIAL THICKNESSES Dwicahyo, Tegar; Basit, Arul; Amar, Amar; Sukarman, Sukarman; Khoirudin, Khoirudin; Suhara, Ade
Jurnal Rekayasa Mesin Vol. 15 No. 2 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i2.1486

Abstract

This article presents a study on optimizing Tungsten Inert Gas (TIG) welding on mild steel (SPCC-SD/JIS G3141) with varying thicknesses of 0.6 mm and 0.8 mm. Automobile bodies commonly utilize mild steel with a material thickness ranging from 0.6 to 0.98 mm. The objective of this study was to ascertain the upper limit of tensile-shear strength that can be achieved by utilizing the specific parameters utilized in TIG welding. This study utilizes a three-level experiment and incorporates three input variables in the Taguchi experimental optimization method. The advantage of this approach lies in its ability to yield comprehensive outcomes while minimizing expenses, as it can be adapted to the resources available. An additional benefit is that this approach can be implemented in a multitude of industrial situations.The study's input variables are welding current, argon gas flow rate, and electrode diameter. Utilizing a continuous flow of argon gas of 12 LPM (liter per minute), a welding current of 55 A, and an electrode diameter of 1.6 mm, the maximum mean T-S strength of 3457.13 N was achieved. The ANOVA revealed that the flow rate, welding current, and electrode diameter had a per cent contribution of 50.07%, 26.89%, and 23.04%. The flow rate was the parameter with the most significant impact on the influential variable. The welding current and the electrode diameter do not significantly affect the response. The findings indicate that by adjusting the parameters to the optimal level determined by the Taguchi method, the S-N ratio for T-S strength increases by 9.30%, and T-S strength increases by 12.42%. The findings of this study offer a thorough comprehension of enhancing the TIG welding approach and can be further refined by incorporating additional variables.
Analysis of the Effects of Variable Food Packaging Seals on Tensile Test Results for PET, LDPE, and Aluminum Foil Composite Materials Ridwan; Rizki Aulia Nanda; khoirudin, Khoirudin; sukarman, Sukarman
R.E.M. (Rekayasa Energi Manufaktur) Jurnal Vol 8 No 2 (2023): December
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/r.e.m.v8i2.1673

Abstract

This article features experimental findings on the tensile testing procedure conducted on package seals made from Polyethylene Terephthalate (PET)-Low-Density Polyethylene (LDPE)-Aluminum Foil composite materials commonly employed in food packaging applications. This study aims to ascertain the outcomes of the tensile test or tensile strength of the packaging seal utilizing the Auto Tensile Tester XLW according to the ASTM F88 standards. The tensile test involves using two types of variables: independent variables and dependent variables. The study used temperature (°C) and holding time (s) as independent factors, whereas the dependent variable is the tensile test results or tensile strength (N/mm2). This study utilized identical parameters for each variable. The specimen's measurements were 15mm x 25mm. This experiment included three temperature factors and a constant holding time of 1 second. Every parameter underwent four tests, resulting in twelve test samples. Based on the findings, the optimal temperature range for achieving the most efficient packing sealing was 135oC. The maximum sealing strength of 17.50 N/mm2 was attained within this temperature range, and the outcomes were influenced by both the temperature and the duration of the holding period. Each sample has distinct values, encompassing a rather narrow range.
The Heat Transfer Coefficient in a Copper Pipe Flow System Using a 40/60 Volume Ratio Ethylene Glycol/Water (EG/H2O) Blended Fluid Thiyana, Thyana; Junaedi, Ahmad; Rahman, Mumammad Arif; Sukarman, Sukarman; Khoirudin, Khoirudin; Azizah, Renata Lintang
Jurnal Teknik Mesin Mechanical Xplore Vol 4 No 1 (2023): Jurnal Teknik Mesin Mechanical Xplore (JTMMX)
Publisher : Mechanical Engineering Department Universitas Buana Perjuangan Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36805/jtmmx.v4i1.5570

Abstract

This study discusses the performance of Ethaline Glycol/water (EG/H2O) fluids at a volume ratio of 40/60. EG/H2O fluids are widely used as basic fluids in cooling and heating system applications. The discussion of EG/H2O fluid performance is focused on the analysis of the heat transfer coefficient and pressure drop. The study used an experimental method using a suction test made of pure copper with an inner diameter, outer diameter and length of 16 mm, 19 mm and 1500 mm respectively. The EG/H2O volume ratio at 40/60 was selected as the input parameter. Other input parameters are variations in the fluid flow rate which are regulated using a control valve at fluid flow rates of 4, 6, 8, 10.12, 14.16 and 18 liters/minute. A 2-unit tubular heater with a total capacity of 2000 W was installed on the sides of the copper pipes. A voltage regulator with a capacity of 3000 W is used to regulate the electric power by regulating the supplied voltage. Ampere pliers are used to measure amperage at the setting used. The experimental results show that the performance of the EG/H2O fluid on the heat transfer coefficient increases as the fluid flow rate increases. The highest heat transfer coefficient rate was obtained at a fluid flow rate of 18 L/minute, while the lowest value was obtained at a fluid flow rate of 4 L/minute. Pressure drops fluctuations occur as the fluid flow rate increases. Even though there is a fluctuating pressure drop, this condition does not significantly affect the friction factor, because the fluid flow characteristics occur in a turbulent manner
An Heat Transfer Coefficient and Pressure Characteristics in a Copper Pipe Flow System: A Preliminary study Utilizing an EG/Water Mixture Junaedi, Akhmad; Sukarman; Khoirudin, Khoirudin; Taufik Ulhakim, Muhammad; Lintang Azizah, Renata
Jurnal Teknik Mesin Mechanical Xplore Vol 4 No 2 (2024): Jurnal Teknik Mesin Mechanical Xplore (JTMMX)
Publisher : Mechanical Engineering Department Universitas Buana Perjuangan Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36805/jtmmx.v4i2.5920

Abstract

This study investigates the performance of an ethylene glycol/water (EG/Water) fluid at a 40:60 volume ratio, a commonly used base fluid in heating and cooling systems. The evaluation focuses on analyzing heat transfer coefficients and pressure drops. The research adopts an experimental approach, utilizing a test section made of pure copper with an inner diameter of 16 mm, an outer diameter of 19 mm, and a length of 1500 mm. The volume ratio of EG/Water at 40:60 is an input parameter, along with varying fluid flow rates controlled by a valve, ranging from 2 to 18 liters per minute. Two tubular heaters with a combined capacity of 2000 W are attached to the copper pipe, regulated by a 3000 W voltage regulator. Electric current is measured with ammeters. The experimental results reveal that the heat transfer coefficient of the EG/Water fluid increases as the fluid flow rate rises. The highest heat transfer coefficient is achieved at 18 L/min, while the lowest is observed at 4 L/min. Pressure drop increases with higher flow rates, but this does not significantly affect the friction factor, as it undergoes a noticeable decrease while the Reynolds number increases.
The Box-Behnken Response Surface Methodology Approach to Optimize Tensile Strength Load in Resistance Spot Welding Using SPCC-SD Steel Mulyadi, Dodi; Amir, Amir; Cepi Budiansyah, Ade; Sukarman, Sukarman; Khoirudin, Khoirudin; Arif Wibowo, Ludvi; Kumbarasari, Shanti
Jurnal Teknik Mesin Mechanical Xplore Vol 4 No 2 (2024): Jurnal Teknik Mesin Mechanical Xplore (JTMMX)
Publisher : Mechanical Engineering Department Universitas Buana Perjuangan Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36805/jtmmx.v4i2.6090

Abstract

This article describes an experimental investigation into optimizing spot welding resistance (RSW) using a spot-welding machine equipped with a dual-electrode Pressure Force System (PFS). The optimization procedure entails the incorporation of SPCC-SD (JIS G 3141), a low-carbon steel that finds extensive application in the automotive sector. With the widespread use of SPCC-SD steel, RSW is an essential process in the automotive industry for assembling body components. This study employs the Box-Behnken Response Surface Methodology (Box-Behnken-RSM) to optimize the tensile strength load (TS-load), a critical parameter in RSW, through a meticulous analysis of the interplay between Holding Time, Squeezing Time, Welding Current, and Welding Time. Through the methodical design of experiments, the collection of Tensile Strength Load data, and the application of statistical modeling via RSM, this study employs SPCC-SD steel to determine the optimal values for these variables in RSW. The results above readily offer a valuable understanding of the most significant determinants and their interrelationships, thus facilitating advancements in welding methodologies and quality control in the automotive manufacturing sector. This study employs the Box-Behnken Response Surface Methodology to investigate the impacts and interrelationships of different parameters thoroughly. It aims to enhance the TS-load using SPCC-SD steel during the resistance spot welding procedure. This research contributes to advancing welding methodologies employed in the automotive manufacturing sector.
A Comprehensive Investigation of Deep Drawing Processes for a 2-Inch Diameter Dop-pipe Cap: Numerical and Experimental Analysis Tikamori, Ghazi; Patya, Dhea Intan; Sukarman, Sukarman; Aulia Nanda, Rizki; Mulyadi, Dodi; Khoirudin, Khoirudin; Amir, Amir; Rokhman, Taufiqur; Safril, Safril
Jurnal Teknik Mesin Mechanical Xplore Vol 4 No 2 (2024): Jurnal Teknik Mesin Mechanical Xplore (JTMMX)
Publisher : Mechanical Engineering Department Universitas Buana Perjuangan Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36805/jtmmx.v4i2.6101

Abstract

The persistent challenges in material forming processes arise from recurrent issues encountered during the deep drawing process, particularly involving cracks and deviations from standard thickness dimensions. This article investigates the deep drawing process using both experimental and numerical methodologies. The experimental approach employs a 40-ton capacity power press machine, while the numerical method utilizes the ABAQUS student version software. SPCC-SD (JIS G3141) is the selected material for producing a Dop-pipe 2-inch diameter pipe cap in both approaches. Noteworthy findings include the highest positive and negative correlations observed in elements E 46 and E 48, with values of 0.715 and -0.933, respectively. Minimal disparities, averaging around 4.6% for all components, were evident between the experimental and numerical methodologies. The numerical approach yielded predictive results identifying potential issues in elements E 47 and E 48. This observation did not reveal instances of tearing failure but instead showcased an increase in thickness due to a higher axial force between the dies and punched-in components. The study successfully and accurately predicted product thickness for all components, presenting a contrast with outcomes obtained through the experimental method. Furthermore, this research advances the deep drawing process, extending its applicability to broader material forming applications and ultimately enhancing overall production process efficiency.
Evaluating the Thermal Performance of Shell-and-Tube Heat Exchangers: The Role of Flow Rate in Water-Based Systems Afgani, Abduh Al; Zaidar, Chilfi; Saputra Sigalingging, Wanri; Sukarman; Khoirudin, Khoirudin; Abdulah, Amri
Jurnal Teknik Mesin Mechanical Xplore Vol 5 No 1 (2024): Jurnal Teknik Mesin Mechanical Xplore (JTMMX)
Publisher : Mechanical Engineering Department Universitas Buana Perjuangan Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36805/jtmmx.v5i1.6129

Abstract

This research investigates the performance of water as a working fluid in the shell side of shell-and-tube heat exchangers (STHEs), explicitly analyzing how variations in flow rate influence the heat transfer coefficient, pressure drop, and friction factor characteristics. Experiments were conducted using an STHE with a SUS 201 stainless steel shell and a pure copper tube featuring an inner diameter of 10 mm and an outer diameter of 13 mm. The flow rates of the cold fluid varied at 9, 10, and 12 liters per minute (LPM), while the hot fluid flow was maintained at a constant rate of 6.67 LPM. A 600 W heater, regulated by a PID system, was utilized to evaluate thermal performance, with water serving as the hot fluid on the shell side and the cold fluid on the tube side. Results demonstrate a significant increase in both the heat transfer coefficient and the heat transfer rate with higher flow rates of the cold fluid, with the maximum heat transfer coefficient recorded at 12 LPM and the minimum at 9 LPM. The STHE exhibited high efficiency, with heat transfer rate differences between the shell and tube sides remaining below 5%. Although pressure fluctuations were observed with increasing flow rates, they did not substantially affect the friction factor, indicating a predominantly turbulent flow regime. These findings provide critical insights for optimizing heat transfer performance in STHEs, contributing to advancements in thermal management technologies and enhancing the design of efficient heat exchangers.
The Advanced Analysis of Deep Drawing Processes for 1-Inch Diameter Dop-Pipe Caps: Simulation and Experimental Insights Pratama, Tito Chaerul; Sukarman; Tikamori, Ghazi; Mulyadi, Dodi; Supriyanto, Agus; Amir, Amir; Khoirudin, Khoirudin; Hananto, Agus
Jurnal Teknik Mesin Mechanical Xplore Vol 5 No 1 (2024): Jurnal Teknik Mesin Mechanical Xplore (JTMMX)
Publisher : Mechanical Engineering Department Universitas Buana Perjuangan Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36805/jtmmx.v5i1.7269

Abstract

This article investigates the challenges and solutions within the deep drawing process, focusing on issues like cracks and deviations from standard thickness dimensions. Utilizing both experimental methods with a 40-ton power press machine and numerical simulations via ABAQUS software, the study uses SPCC-SD steel to produce a Dop-pipe 1-inch diameter pipe cap. Key findings reveal significant correlations in elements E-90 and E-91, with minimal disparities of around 4.5% between experimental and numerical approaches, showcasing the accuracy of numerical predictions. Notably, the numerical simulations identify potential issues such as increased thickness due to higher axial forces, providing valuable insights for process optimization and defect reduction. By advancing the deep drawing process and extending its applicability to broader material-forming applications, this research contributes significantly to enhancing production efficiency and improving manufacturing practices, emphasizing the importance of simulation-driven approaches in achieving precision and quality enhancement in complex manufacturing processes.
Co-Authors Adiwibowo, Zakaria Afgani, Abduh Al Afif Hakim Agus Supriyanto AHMAD JUNAEDI Akhmad Junaedi Amar Amar Amir Amir Amri Abdulah Amri, Saeful April Firman Daru Aria Hendrawan, Aria Arif Wibowo, Ludvi Atmoko Nugroho Aulia Nanda, Rizki Azizah Azizah Azizah, Renata Lintang Azmi, W. H. Azzaki, Adnan Badriyah, Fatikhatul Banu Witono Basit, Arul Bernadus Very Christoko Budiansyah, Ade Cepi Cahyo, Tegar Dwi Cahyono, Yono Cepi Budiansyah, Ade Dewi Nurdiyah, Dewi Dodi Mulyadi Dodi Mulyadi Dwicahyo, Tegar Fahrizin, Nazar Fazin, Nazar Fazrin, Nazar Fuadiah, Shiema Jamalah Gunata, Krida Pandu Hadi, Soiful Hananto, Agustia Hanif, Mohammad Burhan Hassanudin, Wahyu Maulana Hidayat, Syahrul Taufik Ines Heidiani Ikasari Irfan Rizky Hutomo Irfani, Tomas Karyadi Karyadi Khusna, Arina Kumbarasari, Shanti Lailisya Putri, Purnama Lamijan Lamijan, Lamijan Lintang Azizah, Renata Miftahudin, Moh Muahemin, Enjang Muji Setiyo Murtalim, Murtalim Muzammil, Ach Noer Sasongko Nugroho, Fajar Raditya Nur Wakhidah Nur Widyartha, Yogi Panata, Helmi Prasetio Patya, Dhea Intan Pratama, Tito Chaerul Prima, Juan Candy Putri, Nela Aulina Rahdiana, Nana Rahman, Mumammad Arif Rajab, Dede Ardi Rakasiwi, Galih Ramadan, Trisa Ramadani, Yovi Adhi Ransanoi, Teep Riana, Rati Ridwan Rizki Aulia Nanda Rohman Rosaria, Stefani Dewi Safril Safril Sanusi Sanusi Saputra Sigalingging, Wanri Saputra, Ridhwan Salahuddin Saputra, Ridhwan Shalahuddin Saputra, Rio Handika Setiaji, Galet Guntoro Setiarso, Galih Shieddieque, Apang Djafar Sudarjat, Muhammad Fauzaan Fikri Sudarjat Suhara, Ade Sukarman Sukarman Sukarman Sulistiyanto Sulistiyanto, Sulistiyanto Supriyanto, Danang Susanto Susanto Susilo, Hendri Syamsudin Syamsudin Tantri, Andini Kartika Taufik Ulhakim, Muhamad Taufik Ulhakim, Muhammad Taufiqur Rokhman, Taufiqur Thiyana, Thyana Tikamori, Ghazi Tri Toto Wiharjianto, Muhammad Ulhakim, Mumamad Taufik Vensy Vydia Wahyu Christanto, Febrian Widodo, Muhammad Faizal Agung Wieke Dewi Suryandari Zaidar, Chilfi ZAMAN, BADROE