p-Index From 2021 - 2026
7.868
P-Index
This Author published in this journals
All Journal Seminar Nasional Aplikasi Teknologi Informasi (SNATI) JURNAL SISTEM INFORMASI BISNIS Jurnal Pendidikan Teknologi dan Kejuruan Techno.Com: Jurnal Teknologi Informasi Jurnas Nasional Teknologi dan Sistem Informasi CESS (Journal of Computer Engineering, System and Science) Register: Jurnal Ilmiah Teknologi Sistem Informasi KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Jurnal Informatika Upgris E-Dimas: Jurnal Pengabdian kepada Masyarakat JOIN (Jurnal Online Informatika) Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) SemanTIK : Teknik Informasi JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING JIKO (Jurnal Informatika dan Komputer) AKSIOLOGIYA : Jurnal Pengabdian Kepada Masyarakat JURNAL MEDIA INFORMATIKA BUDIDARMA JITK (Jurnal Ilmu Pengetahuan dan Komputer) JURNAL ILMIAH INFORMATIKA SINTECH (Science and Information Technology) Journal Jurnal Infomedia MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer ALGORITMA : JURNAL ILMU KOMPUTER DAN INFORMATIKA J-SAKTI (Jurnal Sains Komputer dan Informatika) IJISTECH (International Journal Of Information System & Technology) KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer) The IJICS (International Journal of Informatics and Computer Science) JURIKOM (Jurnal Riset Komputer) JURTEKSI Building of Informatics, Technology and Science Journal of Computer System and Informatics (JoSYC) TIN: TERAPAN INFORMATIKA NUSANTARA Brahmana : Jurnal Penerapan Kecerdasan Buatan Jurnal Tunas Journal of Computer Networks, Architecture and High Performance Computing Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Jurnal Revolusi Indonesia JiTEKH (Jurnal Ilmiah Teknologi Harapan) IJISTECH Journal of Applied Data Sciences RESOLUSI : REKAYASA TEKNIK INFORMATIKA DAN INFORMASI JPM: JURNAL PENGABDIAN MASYARAKAT DEVICE Bulletin of Computer Science Research Journal of Informatics Management and Information Technology KLIK: Kajian Ilmiah Informatika dan Komputer J-SAKTI (Jurnal Sains Komputer dan Informatika) Jurnal Pengabdian Kepada Masyarakat Jurnal Penelitian Inovatif BEES: Bulletin of Electrical and Electronics Engineering JOMLAI: Journal of Machine Learning and Artificial Intelligence Jurnal Krisnadana STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer Jurnal Krisnadana Journal of Informatics, Electrical and Electronics Engineering
Claim Missing Document
Check
Articles

Optimalisasi Parameter dengan Cross Validation dan Neural Back-propagation Pada Model Prediksi Pertumbuhan Industri Mikro dan Kecil Windarto, Agus Perdana; Defit, Sarjon; Wanto, Anjar
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 11, No 1 (2021): Volume 11 Nomor 1 Tahun 2021
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21456/vol11iss1pp34-42

Abstract

It is important for us to predict what will happen in future and to reduce uncertainty. Various analyzes are therefore necessary in order to optimize or improve the prediction results by several methods. The objective of this research is to analyze predictive results by optimizing the training and testing by means of cross validating parameters on the growth of micro and small-scale production in Indonesia through the exactness of the return-propagative method. The method of reproduction is used. These results are compared with results of backpropagation during training and testing without optimisation of the same architectural model. The dataset is based on the growth in production in micro and small businesses by province from the Central Statistical Agency(BPS). There were 34 records in which data from 2015-2019 for growth of production were collected. The results with optimisation have surpassed without optimisation the back propagation model by looking at RMSE, in which the best RMSE in the 3-2-1 architectural model was obtained and the side type is mixed sampling. The obtained RMSE value is 0.1526, or a difference between the best background architectural model, 3-2-1 and 0.0034. (0.157). The results of this model were 94 percent.
ANALISIS ALGORITMA BACKPROPAGATION DALAM PREDIKSI NILAI EKSPOR (JUTA USD) Saragih, Jonas Rayandi; Saragih, Mhd. Billy Sandi; Wanto, Anjar
Jurnal Pendidikan Teknologi dan Kejuruan Vol 15, No 2 (2018): Edisi Juli 2018
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (369.819 KB) | DOI: 10.23887/jptk-undiksha.v15i2.14362

Abstract

In a study, the analysis is necessary for the accuracy and accuracy of an education. So also in prediction Export Value (Million USD). This research will discuss the value of export in general in North Sumatra based on Million USD. This research is conducted to know the export development in North Sumatera in the future. This research uses Artificial Neural Network with Backpropagation algorithm. The research data used comes from the Central Bureau of Statistics of North Sumatra from 2012 until 2017. This research will use five architectural models namely 4-5-1, 4-7-1, 4-9-1, 4-10-1 and 4-11-1. The best model of the five models is 4-7-1 with a 100% accuracy rate, with a time of 27 seconds. The error rate used is 0.001 - 0.05. Thus, this model is good enough to predict Export Value in North Sumatra, because its accuracy reaches 100%.
Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia Andriani, Yuli; Silitonga, Hotmalina; Wanto, Anjar
Register: Jurnal Ilmiah Teknologi Sistem Informasi Vol 4, No 1 (2018): January
Publisher : Information Systems - Universitas Pesantren Tinggi Darul Ulum

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/register.v4i1.1157

Abstract

Analisis pada penelitian penting dilakukan untuk tujuan mengetahui ketepatan dan keakuratan dari penelitian itu sendiri. Begitu juga dalam prediksi volume ekspor dan impor migas di Indonesia. Dilakukannya penelitian ini untuk mengetahui seberapa besar perkembangan ekspor dan impor Indonesia di bidang migas di masa yang akan datang. Penelitian ini menggunakan Jaringan Syaraf Tiruan (JST) atau Artificial Neural Network (ANN) dengan algoritma Backpropagation. Data penelitian ini bersumber dari dokumen kepabeanan Ditjen Bea dan Cukai yaitu Pemberitahuan Ekspor Barang (PEB) dan Pemberitahuan Impor Barang (PIB). Berdasarkan data ini, variabel yang digunakan ada 7, antara lain: Tahun, ekspor minyak mentah, impor minyak mentah, ekspor hasil minyak, impor hasil minyak, ekspor gas dan impor gas. Ada 5 model arsitektur yang digunakan pada penelitian ini, 12-5-1, 12-7-1, 12-8-1, 12-10-1 dan 12-14-1. Dari ke 5 model yang digunakan, yang terbaik adalah 12-5-1 dengan menghasilkan tingkat akurasi 83%, MSE 0,0281641257 dengan tingkat error yang digunakan 0,001-0,05. Sehingga model ini bagus untuk memprediksi volume ekspor dan impor migas di Indonesia, karena akurasianya antara 80% hingga 90%.   Analysis of the research is Imporant used to know precision and accuracy of the research itself. It is also in the prediction of Volume Exports and Impors of Oil and Gas in Indonesia. This research is conducted to find out how much the development of Indonesia's exports and Impors in the field of oil and gas in the future. This research used Artificial Neural Network with Backpropagation algorithm. The data of this research have as a source from custom documents of the Directorate General of Customs and Excise (Declaration Form/PEB and Impor Export Declaration/PIB). Based on this data, there are 7 variables used, among others: Year, Crude oil exports, Crude oil Impors, Exports of oil products, Impored oil products, Gas exports and Gas Impors. There are 5 architectural models used in this study, 12-5-1, 12-7-1, 12-8-1, 12-10-1 and 12-14-1. Of the 5 models has used, the best models is 12-5-1 with an accuracy 83%, MSE 0.0281641257 with error rate 0.001-0.05. So this model is good to predict the Volume of Exports and Impors of Oil and Gas in Indonesia, because its accuracy between 80% to 90%.
REKOMENDASI PENJUALAN AKSESORIS HANDPHONE MENGGUNAKAN METODE ANALITYCAL HIERARCHY PROCESS (AHP) Widyasuti, Meilin; Wanto, Anjar; Hartama, Dedy; Purwanto, Eko
KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer) Vol 1, No 1 (2017): Intelligence of Cognitive Think and Ability in Virtual Reality
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/komik.v1i1.468

Abstract

Talk about the lifestyle that is now growing, it also affects the appearance of mobile phones that are owned by everyone that is more complete mobile accessories and create attractive appearance. Along with the time mobile phone accessories business is also experiencing a fairly rapid development, not even just a store product that sells mobile phone accessories but also has sold the counter. Here the researchers want to examine the recommendation of mobile accessories, where the selected accessories are the accessories of the most popular consumers based on store ratings. The rise of accessories business is proving that the mobile phone accessories still deserve to be a good opportunity. Some telemonication experts predict that mobile users are increasing the number of populations. This can be an accessory business that has good prospects in the future. Based on the results of research using AHP method with 6 samples of best selling mobile accessories, where the data obtained based on the results of interviews with mobile shops in the city Pematangsiantar, obtained the calculation of AHP method for handpone accessories recommendation is 1. Led Selfie (34%), 2. Gopro (25%), 3. Phone Ring (20%), 4. Scean Guard (16%), 5. Charge Wireless (14%) and 6. Handset (10%)
ANALISA PEMILIHAN BARISTA DENGAN MENGGUNAKAN METODE TOPSIS (STUDI KASUS: MO COFFEE) Hutasoit, Rahel Adelina; Solikhun, Solikhun; Wanto, Anjar
KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer) Vol 2, No 1 (2018): Peranan Teknologi dan Informasi Terhadap Peningkatan Sumber Daya Manusia di Era
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/komik.v2i1.935

Abstract

Along with the mushrooming of food & beverrage business in Pematangsiantar city, especially in this case is a coffee shop making a barista a bone of contention for business people in the world of food & beverrage business. This makes business people still feel confused and need information to decide to employ a barista that suits their wishes. The purpose of the study was to analyze the TOPSIS method in determining the selection of baristas with 4 alternatives, namely (A1) Alfian, (A2) Widharta, (A3) Sylviana, and (A3) Anisah. And has 6 assessment criteria, namely (C1) the ability to mix coffee, (C2) know coffee and its intricacies, (C3) taste ability, (C4) work experience, (C5) master the use of a set of coffee machine tools and accessories, and (C6) skill in making latte art. The data obtained will be processed using the TOPSIS method. The results of the study obtained (A3) Widharta with the preference weights (0,6126) as the first rank, followed by the second and third ranks (A2) Sylviana with preference weights (0,4980) and (A1) Disagree with preference weights (0.4597) . It is hoped that this research can help or provide input to Mo Coffee owner in choosing baristas to be employed.Keywords: Barista, TOPSIS, Decision Support System, Pematangsiantar, Assessment Factor, Mo Coffee
IMPLEMENTASI RAPIDMINER DENGAN METODE K-MEANS (STUDY KASUS: IMUNISASI CAMPAK PADA BALITA BERDASARKAN PROVINSI) Sari, Riyani Wulan; Wanto, Anjar; Windarto, Agus Perdana
KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer) Vol 2, No 1 (2018): Peranan Teknologi dan Informasi Terhadap Peningkatan Sumber Daya Manusia di Era
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/komik.v2i1.930

Abstract

Measles is one of the causes of death in children around the world which always increases every year. Although measles immunization programs have been implemented, the incidence of measles in children is still quite high. This study discusses the Implementation of Rapidminer with the K-Means Method (Case Study: Measles Immunization in Toddlers by Province). The increase in cases of measles in toddlers in Indonesia is a case that has never been separated from the government's attention. Data sources and research were obtained from the Central Statistics Agency (BPS). The data used in this study are data from 2004-2017 which consists of 34 provinces. The cluster process is divided into 3 (three) clusters, namely high cluster level (C1), medium cluster level (C2) and low cluster level (C3). So that the assessment for cases of immunization against measles based on high cluster province (C1) is 21 provinces for medium cluster (C2) of 12 provinces and for low cluster (C3) of 1 province. The results of the cluster can be used as input for the government, especially the provinces, so that provinces that enter the high cluster receive more attention and increase the socialization of measles immunization against children under five. Keywords: Data Mining, Measles, Clustering, K-means
Prediksi Perkembangan Jumlah Pelanggan Listrik Menurut Pelanggan Area Menggunakan Algoritma Backpropagation Saragih, Irfan Christian; Hartama, Dedy; Wanto, Anjar
JURIKOM (Jurnal Riset Komputer) Vol 7, No 4 (2020): Agustus 2020
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/jurikom.v7i4.2291

Abstract

Electricity is one of the vital needs of humanity. Without electricity, it is certain that the wheels of the economy will not be able to run properly. So that electricity customers are increasingly increasing, as they increase the needs and population of the community. Therefore this study aims to determine the development of the number of electricity customers using the backpropagation algorithm. The research data used was electricity customer data by area (customer) in North Sumatra in 2013-2017, obtained from the Central Statistics Agency of North Sumatra. This study uses 5 architectural models, namely 4-2-1, 4-3-1, 4-4-1, 4-5-1, and 4-6-1. Of the five architectural models used, one of the best architectural models is obtained 4-4-1 with an accuracy rate of 88%, epoch 716 iterations in a short amount of time, 15 seconds, with MSE Training 0,00099763 and MSE testing 0.00109935. Based on the best architectural model, this will be used to predict the Development of Electricity Customers by Area Customers in North Sumatra from 2018 to 2020
Prediksi Jumlah Nilai Impor Sumatera Utara Menurut Negara Asal Menggunakan Algoritma Backpropagation Indri Sriwahyuni Purba; Anjar Wanto
Techno.Com Vol 17, No 3 (2018): Agustus 2018
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (429.148 KB) | DOI: 10.33633/tc.v17i3.1769

Abstract

Dalam memenuhi kebutuhan dalam negeri, pemerintah mesti melakukan kegiatan ekonomi Internasional salah satunya impor. Impor adalah proses transportasi barang atau komoditas dari suatu Negara ke Negara lain secara legal. Terkhusus di provinsi Sumatera Utara selalu terjadi kenaikan jumlah impor tiap tahunnya terhitung pada tahun 2014-2016 di Badan Pusat Statistik ( BPS ) Sumatera Utara. Pada penelitian ini, penulis akan memprediksi jumah nilai impor untuk 5 tahun kedepan dengan menggunakan algoritma backpropagation. Backpropagation merupakan salah satu metode Jaringan Syaraf Tiruan (Artificial Neural Network), yang cukup handal dalam memecahkan masalah. Salah satunya adalah prediksi jumlah nilai impor di Sumatera Utara. Penelitian ini menggunakan 5 model arsitektur : 4-12-1, 4-15-1,4-18-1, 4-19-1, 4-20-1, dari kelima model tersebut akurasi terbaik  diperoleh dari model arsitekktur 4-19-1 dengan nilai akurasi 100%, epoch 2807 iterasi, dan MSE yaitu 0.00099930653.
Analisis JST Dalam Memprediksi Jumlah Tamu Pada Hotel NonBintang Bil Klinton Sihotang; Anjar Wanto
Techno.Com Vol 17, No 4 (2018): November 2018
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (593.997 KB) | DOI: 10.33633/tc.v17i4.1762

Abstract

Analysis on a prediction (forecasting) is very important to do in a study, So with this data analysis will be obtained a clear picture of the issues discussed. As well as in predicting the number of  guests in non-star hotels. This research is expected to be useful for both Government and private parties as one of the study materials in the development of hotel business, as well as for academics as study material / research especially related to tourism and hospitality field. The data used in this study is data on the number of guests in non-star hotels by province from the Central Bureau of Statistics Indonesia from 2011 to 2016. This study uses the method of artificial neural network Backpropagation using 5 architectural models, those are 4-19-1, 4-50-1, 4-17-1, 4-16-1, 4-22-. From  architecture, the best architecture is 12-19-1 with an accuracy of 88.2%, MSE 0.10206089 with error rate used 0.001 - 0.05. Thus, this model is good enough to predict the number of guests indonesia in non-star hotels
DIAGNOSA KERUSAKAN SISTEM PENDINGIN PADA MOBIL TOYOTA MENGGUNAKAN METODE FORWARD CHAINING Andi Sanggam Sidabutar; Poningsih Poningsih; Iin Parlina; Sumarno Sumarno; Anjar Wanto
Jurnal Revolusi Indonesia Vol 1 No 3 (2021): Jurnal Revolusi Indonesia
Publisher : Fenery Library

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.1235/jri.v1i3.88

Abstract

Dalam dunia otomotif, khususnya mobil erat kaitannya dengan manusia, karena mobil merupakan alat transportasi yang sering digunakan. Pada mobil terdapat beberapa sistem yang saling berhubungan satu dengan lainnya, salah satunya adalah sistem pendingin, yang berfungsi untuk menjaga atau menstabilkan suhu mesin agar selalu pada temperatur kerja. Oleh karena itu dalam penggunaan mobil kemungkinan besar membutuhkan perawatan berkala, dengan mendeteksi kerusakan apa yang terjadi pada mobil, hal inilah yang mendorong pembangunan sistem pakar untuk mengidentifikasi kerusakan sistem pendingin mesin mobil. Dalam aplikasi berbasis web yang menggunakan metode forward chaining, metode ini dapat digunakan untuk mencari data dan fakta untuk di proses menuju solusi akhir dan dapat menerapkan prosedur dalam bentuk (if-Then) jika-maka dengan menampilkan pernyataan penyebab kerusakan, dengan tujuan membantu para penggunan mobil untuk mengatasi kerusakan-kerusakan yang akan timbul dengan baik. Pembangunan aplikasi ini menggunakan program Dreamweaver CS6 dan XAMPP V.4.2.2
Co-Authors Abdi Rahim Damanik Abdullah Ahmad Achmad Noerkhaerin Putra Adnan, Syed Muhammad Agung Pratama Agung Wibowo Agung Yusuf Pratama Agus Perdana Windarto Akbari, Imam Anan Wibowo Andi Sanggam Sidabutar Arifah Hanum Arifin Nur, Khairun Nisa Asro Pradipta Astuti, Wiwik Sri Ayu Artika Fardhani Azwar Anas Manurung Azwar Anas Manurung Bil Klinton Sihotang Cici Astria Damanik, Bahrudi Efendi Damayanti, Tri Febri Daniel Sitorus Dedi Kusbiantoro Dedi Suhendro Dedi Suhendro Dedy Hartama Dedy Hartama Dedy Hartama Dedy Hartama Dedy Hartama Deri Setiawan Desi Insani Natalia Simanjuntak Dewi, Rafiqa Dinda Nabila Batubara Edu Wardo Saragih eko hartato Eko Hartato Eko Kurniawan Eko Purwanto Elfin Efendi Eva Desiana Fajar Ramadan Fazira, Rizky Nazwa Febriyanto, R Tri Hadi Fikri Yatussa’ada Fitri Anggraini GS , Achmad Daengs Gumilar Ramadhan Pangaribuan Hardinata, Jaya T Harly Okprana Hartama, Dedy Hartama, Dedy Heru Satria Tambunan Heru Satria Tambunan, Heru Satria Ht. Barat, Ade Ismiaty Ramadhona Hutasoit, Rahel Adelina Hutasoit, Rahel Adelina Ihsan Maulana Muhamad Iin Parlina Iin Parlina Iin Parlina Iin Parlina Iin Parlina Iin Parlina Ika Okta Kirana Ika Okta Kirana Ika Okta Kirana Ika Okta Kirana Ika Okta Kirana Ika Purnama Sari Ilham Syahputra Saragih Imelda Asih Rohani Simbolon Indra Gunawan Indra Gunawan Indra Satria Indra Satria Indra Satria Indri Sriwahyuni Purba Irawan Irawan Irfan Sudahri Damanik Jalaluddin Jalaluddin Jalaluddin Jalaluddin Jaya Tata Hardinata Jeni Sugiandi Jonas Rayandi Saragih Jonas Rayandi Saragih Joni Wilson Sitopu Jufriadif Na`am, Jufriadif Juli Wahyuni Khairun Nisa Arifin Nur Khairunnissa Fanny Irnanda Kirana, Ika Okta M Mesran M Safii M. Safii M.Ridwan Lubis Manurung, Azwar Anas MARIA BINTANG Marseba Situmorang Martina Silaban Mesran, Mesran Meychael Adi Putra Hutabarat Mhd Ali Hanafiah Mhd Gading Sadewo Mhd. Billy Sandi Saragih Mhd.Buhari Sibuea Mora Malemta Sitomorang Muhammad Aliyul Amri Muhammad Aliyul Amri Muhammad Julham Muhammad Julham Muhammad Mahendra Muhammad Ridwan Lubis Muhammad Ridwan Lubis Muhammad Ridwan Lubis Muhammad Ridwan Lubis Muhammad Syafiq Muhammad Wijaya Napitupulu, Flora Sabarina Nasution, Rizki Alfadillah Nasution, Zulaini Masruro Nazlina Izmi Addyna Ni Luh Wiwik Sri Rahayu Ginantra Nur Ahlina Febriyati Nur Arminarahmah Nur Arminarahmah Nur, Khairun Nisa Arifin Nuraysah Zamil Purba Nurhayati Nurhayati Okprana, Harly Okta Andrica Putra Parlina, Iin Poningsih Poningsih Poningsih Poningsih Poningsih Poningsih Poningsih Poningsih Poningsih Poningsih Poningsih Poningsih Poningsih, Poningsih Putrama Alkhairi Rahmat W Sembiring Rahmat W. Sembiring Rahmat Zulpani Ramadani, Saputra Rapianto Sinaga Ratih Puspadini Reza Pratama Rita Mawarni Rizky Khairunnisa Sormin Ronal Watrianthos Roulina Simarmata Roy Chandra Telaumbanua Ruri Eka Pranata S Solikhun S Solikhun S Sumarno Sadewo, Mhd Gading Safii, M. Safruddin Safruddin Saifullah Saifullah Samuel Palentino Sinaga Samuel Palentino Sinaga Sandy Putra Siregar Saputra Ramadani Saragih, Irfan Christian Saragih, Jonas Rayandi Saragih, Mhd. Billy Sandi Sari, Riyani Wulan Sari, Riyani Wulan Sarjon Defit Setti, Sunil Sigit Anugerah Wardana Silaban, Herlan F Silfia Andini, Silfia Silitonga, Hotmalina Silitonga, Hotmalina Siregar, Sandy Putra Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun Solikhun, Solikhun Suhada Suhada Suhada Suhada Sumarno Sumarno Sumarno Sumarno Sumarno Sumarno Sundari Retno Andani Sundari Retno Andani Sunil Setti Surya Hendraputra Susi Fitryah Damanik Syafri Maradu Manurung Syafrika Deni Rizki Syahri Ramadhan Teuku Afriliansyah Tia Imandasari Titin Handayani Sinaga Tri Welanda Vasma Vitriani Sianipar Veithzal Rivai Zainal Venny Vidya utari Vitri Roma Sari Wida Prima Mustika Widodo Saputra Widya Tri Charisma Gultom Widyasuti, Meilin Widyasuti, Meilin Winanjaya, Riki Yuhandri Yuhandri, Yuhandri Yuli Andriani Yuri Widya Paranthy Zulaini Masruro Nasution Zulaini Masruro Nasution Zulaini Masruro Nasution Zulaini Masruro Nasution Zulia Almaida Siregar