Claim Missing Document
Check
Articles

Found 33 Documents
Search

Analisis Hasil Pendeteksian Kandungan Mineral dari Air Kemasan Menggunakan Sensor TDS Berbasis Internet Of Things Surdin, Iskandar; Zainuddin, Zahir; Arda, Abdul Latief
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 7, No 6 (2024): Desember 2024
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v7i6.8414

Abstract

Abstrak - Teknologi Internet of Things (IoT) sebagai solusi inovatif dalam memantau dan menganalisis kualitas air secara real-time. Dengan memanfaatkan sensor TDS yang terintegrasi dengan sistem IoT, data kandungan mineral dalam air kemasan dapat dipantau secara real-time dan dikirim ke platform digital untuk analisis lebih lanjut. Penelitian ini bertujuan untuk mengevaluasi efektivitas penggunaan teknologi IoT dalam pemantauan kualitas air, sehingga dapat memberikan kontribusi positif dalam pengembangan sistem pemantauan kualitas air di masa mendatang. Penelitian ini menggunakan metode eksperimen kuantitatif yakni melakukan pengamatan, pengukuran, dan pengujian sistem yang telah di implementasikan. Software dan hardware yang dirancang dan dilakukan pengujian terhadap pembuatan aplikasi. Melalui jaringan sensor yang terintegrasi dengan teknologi IoT, sistem ini mampu mendeteksi secara real-time mengukur parameter-parameter penting seperti TDS, PH air dan suhu air. Monitoring kualitas air minum dalam sistem monitoring telah terbukti akurat dan real-time. Dari setiap data dari sensor IoT diproses dan disimpan dalam website sebagai cloud data khusus. Sistem IoT yang menggunakan sensor pH, turbidity, TDS, dan suhu memiliki potensi besar dalam memantau kondisi lingkungan secara real-time. Dengan integrasi sensor ke microcontroller, pengiriman data ke server, penyimpanan di database, dan tampilan di website, sistem ini dapat membantu operator memantau berbagai parameter lingkungan secara akurat. Menguji tingkat kekeruhan pada air minum layak konsumsi pada depot air isi ulang, keberhasilan sistem sangat bergantung pada konektivitas yang stabil, keakuratan sensor, kecepatan pengiriman data, serta keandalan penyimpanan dan tampilan data.Kata kunci: IoT, Sensor pH, Turbidity, TDS, Suhu. Abstract - Internet of Things (IoT) technology as an innovative solution for monitoring and analyzing water quality in real-time. By utilizing TDS sensors integrated with an IoT system, mineral content data in bottled water can be monitored in real-time and sent to a digital platform for further analysis. This research aims to evaluate the effectiveness of using IoT technology in monitoring water quality, so that it can make a positive contribution to the development of water quality monitoring systems in the future. This research uses a quantitative experimental method, namely observing, measuring and testing the system that has been implemented. Software and hardware designed and tested for application creation. Through a sensor network integrated with IoT technology, this system is able to detect in real-time, measure important parameters such as TDS, water PH and water temperature. Monitoring drinking water quality in the monitoring system has been proven to be accurate and real-time. Every data from IoT sensors is processed and stored on the website as a special cloud data. IoT systems that use pH, turbidity, TDS and temperature sensors have great potential in monitoring environmental conditions in real-time. By integrating sensors into a microcontroller, sending data to a server, storing in a database, and displaying on a website, this system can help operators monitor various environmental parameters accurately. Testing the level of turbidity in drinking water suitable for consumption at refill water depots, the success of the system is very dependent on stable connectivity, sensor accuracy, speed of data transmission, and reliability of data storage and display.Keywords: IoT, pH Sensor, Turbidity, TDS, Temperature.
Implementasi Sistem Kontrol dan Monitoring Listrik pada Rumah Pintar Berbasis Internet of Things Saidi, Muliyana; Wardi, Wardi; Arda, Abdul Latief
Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI) Vol 7, No 6 (2024): Desember 2024
Publisher : Program Studi Teknik Komputer, Fakultas Teknik. Universitas Serambi Mekkah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32672/jnkti.v7i6.8338

Abstract

Abstrak - Sistem monitoring dan kontrol beban listrik berbasis Internet of Things (IoT) telah terbukti efektif dalam meningkatkan efisiensi energi di rumah. Pengujian yang dilakukan selama 2 bulan menunjukkan bahwa sistem ini mampu mengurangi konsumsi daya listrik hingga 22,6%, dengan kemampuan untuk memantau arus, tegangan, dan daya secara real-time. Sistem ini juga memungkinkan pengguna untuk mengontrol perangkat listrik dari jarak jauh, meningkatkan kenyamanan dan keamanan melalui peringatan dini terhadap potensi risiko kelistrikan. Selain itu, integrasi teknologi IoT dengan solusi mengontrol dan memonitoring penggunaan daya listrik dan perangkat dapat lebih meningkatkan penghematan energi dan optimalisasi penggunaan daya. Hasil penelitian menunjukkan bahwa sistem ini memberikan penghematan energi yang signifikan dan efisiensi yang lebih tinggi dalam mengelola konsumsi listrik rumah tangga. Selain itu, sistem ini juga memberikan kontrol yang lebih fleksibel dan real-time terhadap penggunaan perangkat elektronik, serta mampu mengidentifikasi pola konsumsi energi yang dapat dioptimalkan lebih lanjut. Implementasi sistem IoT ini membuktikan potensinya dalam menciptakan rumah yang lebih hemat energi, aman, dan cerdas.Kata kunci: IoT, monitoring beban listrik, efisiensi energi, smart home. Abstract - Internet of Things-based electrical load monitoring and control system (IoT) has been proven effective in increasing energy efficiency in homes. Tests carried out for 2 months showed that this system could reduce electrical power consumption by up to 22.6%, with capabilities to monitor current, voltage, and power in real time. This system too allows users to control electrical devices remotely,and increase comfort and safety through early warning of potential electrical risks. In addition, the integration of IoT technology with solutions control and monitor the use of electrical power and devices further improve energy savings and optimize power usage. The research results show that this system provides savings significant energy and higher efficiency in managing household electricity consumption. Apart from that, this system also includes control more flexibility, and real-time regarding the use of electronic devices,and can identify energy consumption patterns that can be optimizedFurthermore. The implementation of this IoT system proves its potential to create a more energy-efficient, safer, and smarter home.Keywords: electrical load monitoring, energy efficiency, smart home.
IMPLEMENTASI MODEL DeiT UNTUK MEMBEDAKAN GAMBAR BUATAN AI DAN MANUSIA PADA ILUSTRASI ANIMASI 2D Erwin, Ibnu Taimiyah; Abdul Latief Arda; Imran Taufik; Muhammad Erwin Rosyadi. S; Hilyatul Auliyah Erwin
INTI Nusa Mandiri Vol. 19 No. 2 (2025): INTI Periode Februari 2025
Publisher : Lembaga Penelitian dan Pengabdian Pada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/inti.v19i2.6306

Abstract

The development of artificial intelligence (AI) has influenced various fields, including art and visual design. AI Generative Art, which mimics human styles, has sparked debates on originality, artistic value, as well as legal and ethical challenges. Therefore, methods are needed to distinguish between AI-generated and human-made images, particularly in 2D animation illustrations. This study proposes the use of Data-efficient Image Transformers (DeiT) for image classification. Two models tested are DeiT Base and DeiT Tiny, using a dataset of 6,000 images equally divided between AI and human categories. The dataset is split into training (70%), validation (15%), and testing (15%). Experimental results show that DeiT Base achieves over 95% accuracy with fast convergence and optimal loss function stability. Meanwhile, DeiT Tiny attains around 93% accuracy, being more computationally efficient despite requiring more epochs for stability. Compared to previous models using a larger dataset (11,000 images per category) but achieving only 80% accuracy, DeiT performs better in both accuracy and computational efficiency, even with a smaller dataset. In conclusion, DeiT is effective for classifying 2D animation images. DeiT Base excels in accuracy and convergence speed, while DeiT Tiny is more resource-efficient, making it an ideal choice for environments with computational constraints.
Analisis Metode Decision Tree dan Regresi Logistik Sebagai Sistem Rekomendasi Kenaikan Golongan Berdasarkan Kinerja Pegawai pada Universitas Lamappapoleonro Aksa, Andi Nurul; Achmad, Andani; Arda, Abdul Latief
Jurnal Saintekom : Sains, Teknologi, Komputer dan Manajemen Vol 15 No 1 (2025): Maret 2025
Publisher : STMIK Palangkaraya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33020/saintekom.v15i1.782

Abstract

This research focuses on the importance of employee performance in supporting organizational success, especially in the promotion process at Lamappapoleonro University which is still done manually. Therefore, this research aims to develop a recommendation system for promotion using the Decision Tree and Logistic Regression methods, which is expected to speed up and simplify the decision-making process regarding employee promotions. The Decision Tree algorithm is used to classify employee performance in the form of sufficient, good, and excellent variables, while the Logistic Regression algorithm is used to predict the feasibility of employee promotion with the variable feasible or inappropriate. The data used in this study includes 12 independent variables, such as attendance, discipline, responsibility, and innovative ability. The analysis results show that the Decision Tree and Logistic Regression methods are able to produce accurate predictions, with an accuracy rate of 91.67% and 100% respectively. The main factors that influence promotion are honesty, discipline, and innovation ability. With this recommendation system, the employee promotion process becomes more efficient and accurate, providing significant benefits for human resource management at Lamappapoleonro University.
Image Preprocessing Approaches Toward Better Learning Performance with CNN Tribuana, Dhimas; Hazriani; Arda, Abdul Latief
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 1 (2024): February 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i1.5417

Abstract

Convolutional neural networks (CNNs) are at the forefront of computer vision, relying heavily on the quality of input data determined by the preprocessing method. An undue preprocessing approach will result in poor learning performance. This study critically examines the impact of advanced image pre-processing techniques on computational neural networks (CNNs) in facial recognition. Emphasizing the importance of data quality, we explore various pre-processing approaches, including noise reduction, histogram equalization, and image hashing. Our methodology involves feature visualization to improve facial feature discernment, training convergence analysis, and real-time model testing. The results demonstrate significant improvements in model performance with the preprocessed dataset: average accuracy, recall, precision, and F1 score enhancements of 4.17%, 3.45%, 3.45%, and 3.81%, respectively. Additionally, real-time testing shows a 21% performance increase and a 1.41% reduction in computing time. This study not only underscores the effectiveness of preprocessing in boosting CNN capabilities, but also opens avenues for future research in applying these methods to diverse image types and exploring various CNN architectures for comprehensive understanding.
Classification of Toraja Wood Carving Motif Images Using Convolutional Neural Network (CNN) Nurilmiyanti Wardhani; Asrul, Billy Eden William; Antonius Riman Tampang; Sitti Zuhriyah; Abdul Latief Arda
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5897

Abstract

Wood carving is a cultural heritage with deep meaning and significance for the Toraja ethnic group's culture. By understanding the meaning of each Toraja carving, both tourists and the local community can gain knowledge about Toraja culture, thereby preserving and maintaining the culture amidst modern developments. Image processing approaches, particularly the development of Convolutional Neural Networks (CNN), offer a solution for extracting information from the diverse and intricate patterns of Toraja wood carvings. This study is highly significant as it implements a deep learning model using the CNN algorithm optimized with the ResNet50 architecture. The methodology in this study involves adjusting the batch size during the model training phase and applying weak-to-strong pixel transformation during the double threshold hysteresis phase in the Canny Feature Extraction process on the edges of Toraja carving images, resulting in ResNet50 architecture accurately recognizing the patterns of Toraja wood carvings. The results demonstrate significant improvements in the performance of the ResNet50 architecture with the preprocessed dataset. average precision, recall, precision, and F1-Score improvements in each Toraja carving class. For the Pa' Lulun Pao class, it was found that the precision and recall values were 0.94, and the F1-Score was 0.94. The Pa’ Somba class also showed good results, with a precision value of 0.9697, a recall of 0.96, and an F1-Score of 0.9648. The Pa’ Tangke Lumu class showed even better results, with a precision value of 0.9898, a recall of 0.97, and an F1-Score of 0.9798. The Pa’ Tumuru class also demonstrated good performance, with a precision value of 0.9327, a recall of 0.97, and an F1-Score of 0.9500. This study not only underscores the effectiveness of processing in enhancing CNN capabilities but also opens opportunities for further research in applying these methods to various image types and exploring different CNN architectures.
SISTEM MONITORING BENDUNGAN BERBASIS INTERNET OF THINGS (IoT) Hasruddin; Arda, Abdul Latief; Wardi, Wardi
JURNAL ILMU KOMPUTER Vol 9 No 2 (2023): Edisi September
Publisher : LPPM Universitas Al Asyariah Mandar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35329/jiik.v9i2.281

Abstract

Indonesia merupakan negara yang memiliki curah hujan cukup tinggi pada musim penghujan hampir keseluruhan daerah diguyur hujan dengan intensitas yang tinggi, sehingga perlu diwaspadai akan terjadinya banjir. Namun jika terjadi kelalaian dalam pengawasan bendungan tersebut akibatnya sangat merugikan karena menyangkut keselamatan warga disekitarnya jika terjadi meluapnya air. Oleh karena itu penulis bertujuan membuat sistem monitoring bendungan berbasi IoT, dimana sistem ini bukan hanya sebatas mengontrol ketinggian air, serta mengotomatisasi buka tutup pintu air pada bendungan, tetapi sistem monitoring ini dapat juga dikontrol setiap saat untuk disiarkan langsung atau live streaming dan diberitahukan melalui situs web ketika air meluap. Penelitian ini menggunakan metode penelitian kuantitatif dengan pendekatan eksperimen, jenis penelitian yang dapat dilakukan dalam penelitian sistem monitoring bendungan ini yaitu "eksperimen lapangan". Dari hasil pengujian, didapatkan bahwa jarak air ke sensor lebih dari 11 cm maka status yang tampil pada website adalah Normal dan pintu air dalam keadaan tertutup, jika jarak air ke sensor lebih dari atau sama dengan 10 cm dan kurang dari 11 cm maka status yang tampil pada website adalah Siaga 3, pada saat ini pula pesan whatsapp akan terkirim ke penjaga bendungan untuk menginformasikan bahwa air mengalami kenaikan, jika jarak air ke sensor lebih dari atau sama dengan 9 cm dan kurang dari 10 cm maka status yang tampil pada website adalah Siaga 2, pada saat ini pula pesan whatsapp akan terkirim ke penjaga bendungan untuk menginformasikan bahwa air mengalami kenaikan dan secara otomatis motor servo akan berputar 900 dan pintu bendungan akan terbuka setengah jika jarak air ke sensor kurang dari atau sama dengan 8 cm maka status yang tampil pada website adalah Siaga 1 dan sirine akan berbunyi serta secara otomatis motor servo akan berputar untuk membuka pintu air 1800 dan lagi pesan whatsapp akan terkirim ke penjaga pintu untuk menginformasikan bahwa ketinggian air dalam status siaga 1, serta fitur tambahan yaitu live streaming yang berfungsi sebagai pengontrol kondisi sekitar pintu bendungan apakah benar sensor ultrasonik mendeteksi kenaikan air atau tidak, kesemua alat yang digunakan dapat berfungsi dengan baik. hasil pengujian yang didapatkan nilai error rata-rata adalah 0,72% dan tingkat akurasi sebesar 99,28% dengan mengambil 15 sampel jarak dan air ditambahkan setiap 1 cm, pengujian ini dilakukan pada keadaan air yang tenang tanpa adanya gelombang atau riakan. Dan diperoleh kesimpulan bahwa pembacaan sensor dengan penggaris akurat dan alat berfungsi dengan baik.
SISTEM MONITORING BAK SAMPAH BERBASIS IoT Muh Al Hijr Asqalani; Abdul Latief Arda; Nasrullah
JURNAL ILMU KOMPUTER Vol 9 No 2 (2023): Edisi September
Publisher : LPPM Universitas Al Asyariah Mandar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35329/jiik.v9i2.285

Abstract

Pengawasan tempat sampah masih dilakukan secara manual, di tempat penelitian ini sering terjadi penumpukan sampah pada bak tempat sampah dimana petugas yang khusus menangani pengambilan sampah sering mengalami keterlambatan sehingga muncul bau yang tidak sedap yang dihirup oleh masyarakat dan menimbulkan penyakit yang membahayakan. Jenis penelitian ini adalah penelitian Kuantitatif dengan pendekatan eksperimental dimana ruang lingkup masalah dilakukan dengan metode studi pustaka (library research), metode pengumpulan data lapangan (field research) hasil pengujian pada alat yang dirancang, didapatkan bahwa apabila ketinggian Sampah mencapai 0-10 cm dari jarak ke tiga sensor maka Modul GSM 800L V2 akan mengirim status yang tampil pada aplikasi adalah Sampah Penuh dan apa bila hanya satu sensor membaca ketinggian sampah maka tidak akan dikirim ke aplikasi, adapun hanya bisa dikirim ke aplikasi apabila ke tiga sensor membaca sampah yang mencapai 0-10 cm Hasil Perancangan Sistem Kontrol berbasis IoT Sistem ini terdiri dari tiga sensor yaitu 2 sensor proximity dan sensor Ultrasonic dengan jarak pembacaan masing-masing 0-10 cm untuk mengontrol menggunakan android dengan notifikasi, Efektivitas Sistemnya Sistem monitoring berbasis IoT mengumpulkan data secara otomatis dari sensor-sensor yang terpasang pada bak sampah. Data ini dikirimkan secara real-time ke platform penyimpanan data, memungkinkan pemantauan yang akurat dan tepat waktu.
Evaluasi Kinerja Protokol Routing DTN untuk Skenario Smart Environment di Makassar Fakhirah, Andi Lulu; Salim, Agus; Arda, Abdul Latief
JUSTIN (Jurnal Sistem dan Teknologi Informasi) Vol 13, No 2 (2025)
Publisher : Jurusan Informatika Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/justin.v13i2.87066

Abstract

Penggunaan teknologi smart environment di kota Makassar menimbulkan tantangan komunikasi, terutama karena koneksi jaringan yang tidak selalu stabil. Delay Tolerant Network (DTN) adalah solusi yang memungkinkan pengiriman data meskipun jaringan sering terputus. Penelitian ini bertujuan untuk menyebarkan beberapa protokol routing DTN dalam mendukung lingkungan cerdas di Makassar, dengan mempertimbangkan jaringan yang dinamis dan mobilitas perangkat IoT serta pengguna di kota. Protokol yang diuji meliputi Epidemic Routing, PRoPHET, dan Spray and Wait. Pengujian dilakukan menggunakan ONE Simulator, dengan mengukur kinerja berdasarkan persentase pesan yang berhasil terkirim (probabilitas pengiriman), waktu tunda (latency), biaya tambahan (overhead), Jarak jaringan (hopcount). Hasilnya menunjukkan bahwa setiap protokol memiliki kelebihan dan kekurangan yang bergantung pada situasi jaringan dan pergerakan perangkat. Protokol PRoPHET lebih efisien dalam kondisi mobilitas yang teratur, sedangkan Epidemic Routing lebih baik untuk situasi darurat di mana jaringan sering terganggu. Penelitian ini memberikan panduan penting dalam memilih protokol DTN yang tepat untuk mendukung pengembangan smart environment di Makassar.
Sentiment Analysis of Instagram Comments for Monitoring Personal Branding of YBM Brilian Scholarship Recipients, Regional Office, Makassar Kherani, Riska; Arda, Abdul Latief; Jalil, Abdul; Asnimar, Asnimar; Iskandar, Akbar
Inspiration: Jurnal Teknologi Informasi dan Komunikasi Vol. 15 No. 1 (2025): Inspiration: Jurnal Teknologi Informasi dan Komunikasi
Publisher : Pusat Penelitian dan Pengabdian Pada Masyarakat Sekolah Tinggi Manajemen Informatika dan Komputer AKBA Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35585/inspir.v15i1.103

Abstract

This study focuses on the implementation of the Multilingual BERT (mBERT) architecture combined with a Long Short-Term Memory (LSTM) model to classify Instagram comments into positive, negative, and neutral sentiments. The primary objective is to support the monitoring of personal branding among recipients of the Bright Scholarship managed by the Baitul Mall BRILiaN Foundation (YBMRILiaN) at the Makassar Regional Office. The experimental results indicate that mBERT is capable of effectively analyzing sentiment from Instagram comments on scholarship awardees from Hasanuddin University and UIN Alauddin Makassar. Using a sample of 10 awardees, the model demonstrates a consistent increase in accuracy across epochs, achieving an average accuracy of 63.87% and a peak accuracy of 73.18% for Awardee 10, with a corresponding loss value of 1.094. These findings highlight the potential of this approach to assist scholarship organizers in systematically evaluating the personal branding of awardees on social media. Moreover, the analysis identifies one awardee whose personal branding performance may require further consideration regarding scholarship eligibility.