Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Indonesian Journal of Artificial Intelligence and Data Mining

Comparative Analysis of Support Vector Regression and Linear Regression Models to Predict Apple Inc. Share Prices Resza Adistya Pangestu; Anik Vega Vitianingsih; Slamet Kacung; Anastasia Lidya Maukar; Agustinus Noertjahyana
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 1 (2024): March 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i1.28594

Abstract

Stock price prediction is a complex and important challenge for stock market participants. The difficulty of predicting stock prices is a major problem that requires an approach method in obtaining stock price predictions. This research proposes using machine learning with the Support Vector Regression (SVR) model and linear regression for stock price prediction—the dataset used in the daily Apple Inc historical data from 2018 to 2023. The hyperparameter tuning technique uses the Grid Search method with a value of k = 5, which will be tested on the SVR and Linear Regression methods to get the best prediction model based on the number of cost, epsilon, kernel, and intercept fit parameters. The test results show that the linear regression model with all hyperparameters k = 5 with the average taken performs best with a True intercept fit value. The resulting model can get an excellent error value, namely the RMSE value of 0.931231 and MSE of 0.879372. This finding confirms that the linear regression model in this configuration is a good choice for predicting stock prices.
Sentiment Analysis of Brand Ambassador Influence on Product Buyer Interest Using KNN and SVM Putri, Natasya Kurnia; Vitianingsih, Anik Vega; Kacung, Slamet; Maukar, Anastasia Lidya; Yasin, Verdi
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 2 (2024): September 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i2.29469

Abstract

In the dynamic marketing, companies usually use strategies involving celebrities or influencers to promote their products or brands. The currently popular strategy is using Korean boy bands as brand ambassadors. This collaboration certainly gets a lot of opinion responses through tweets on X app social media. This research aims to analyze sentiment to determine how the product buyer's interest responds to brand suitability, brand image management, and the influence of issues that arise in this collaboration. The research stages consist of data collection, pre-processing, labeling, weighting, and classification with K-Nearest Neighbor and Support Vector Machine and performance evaluation using a confusion matrix. The dataset used was 696 tweets taken using web scrapping techniques. This research uses the Lexicon-based method to divide the dataset into positive, negative, and neutral classes. The SVM method shows superior test results by achieving an accuracy rate of 83.34% compared to the KNN method, which produces an accuracy value of 71.2% in its calculations
Sentiment Analysis of BCA Mobile App Reviews Using K-Nearest Neighbour and Support Vector Machine Algorithm Zandroto, Yosefin Yuniati; Vitianingsih, Anik Vega; Maukar, Anastasia Lidya; Hikmawati, Nina Kurnia; Hamidan, Rusdi
Indonesian Journal of Artificial Intelligence and Data Mining Vol 8, No 2 (2025): July 2025
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v8i2.37773

Abstract

The rapid evolution of digital technology has significantly transformed the financial services landscape, especially in the realm of mobile banking. BCA Mobile stands among the most popular apps for digital banking in Indonesia. Despite its widespread adoption, user reviews reflect diverse viewpoints and sentiments about the app. The objective of this research is to examine the user sentiments regarding the BCA Mobile app, based on reviews sourced from the Google Play Store and App Store. Two classification models, namely Support Vector Machine (SVM) and K-Nearest Neighbour (K-NN), are used in the analysis process. The collected review data undergoes several pre-processing stages and is labeled automatically using a Lexicon-Based technique. For feature weighting, the TF-IDF (Term Frequency-Inverse Document Frequency) approach is used.. Sentiment classification is then carried out using both K-NN and SVM, with performance evaluated through a matrix of confusion based on measurements like F1-score, recall, accuracy, and precision.  The findings show that the SVM algorithm outperforms K-NN in terms of performance, with an accuracy of 94%, while K-NN achieves an accuracy of 82%. This study offers valuable insights for BCA management in understanding user sentiment and enhancing service quality through the application of artificial intelligence
Co-Authors Achmad Aziz Wahdana Achmad Choiron Adi Saptari Agus Sasmito Agustinus Noertjahyana Ahmad Yanu Rokhim Anang Aris Widodo andini dwi arumsari Andira Andira Andira Andira Andira Andira Andira Taslim Andira, Andira ANGGI FIRMANSYAH Anik Vega Vitianingsih Anik Vega Vitianingsih Anik Vega Vitianingsih Anik Vega Vitianingsih Anik Vega Vitianingsih Anik Yuesti Anindo Saka Fitri Anindo Saka Fitri Apri Junaidi, Apri Arie Restu Wardhani Arizia Aulia Aziiza Arrosyadi, Laesa Qotrun Nada Arthur Silitonga Athina Sakina Ratum Avania Shinta Azzahra, Morra Fatya Gisna Nourielda Bella Chelsea Berliana Burhan Primanintyo Cakranegara, Pandu Adi Carolena Setephany Christian Setiadi Ciswondo Ciswondo Dewa Anggara Kesuma Dian Retno Sari Dewi DWI CAHYONO Fauzan, Rizky Fauzi, Ariq Ammar Fawaidul Badri Firmansyah, Deden Fitri Marisa Fitri Marisa Fitri Marisa Fitri Marissa Gita Indah Marthasari Gunawan Hamidan, Rusdi Hashim, Ummi Rabah Helmi Indra Purnomo Hermansyah, David Herwan Yusmira Hikmawati, Nina Kurnia Husri Sidi Ineu Widaningsig Sosodoro Ineu Widaningsih Ineu Widaningsih Sosodoro Ineu Widaningsih Sosodoro Ineu Widaningsih Sosodoro, Ineu Widaningsih Intan Puspita Pribadi Intan Yosa Pramisela Jack Febrian Rusdi Jazid Rizkon Jean Hillary P Korua Jenifer Cafriaty Johan Krisnanto Runtuk Johan Runtuk Julius Mulyono Kacung Hariyono Kamalrudin, Massila Kevin Heryadi Yunior Kresna Arief Nugraha KRISTIAWAN KRISTIAWAN Luqman Hakim Mardiana Andarwati MARIFANI FITRI ARISA Mashudi Mashudi Maulidiana, Putri Dwi Rahayu Maurits Walalayo Mieke Wijayanti Minggow, Lingua Franca Septha Mochammad Syaiful Riza Mohamad Toha Mohd Syaiful Rizal Mucalinda Rupasari Mucalinda Rupasari Muhammad Afra Irwansyah Muzaki, Mochammad Rizki Nurhaba Djiha Octa Wendy Tanurahardja Oktavia Sunny Pramisela, Intan Yosa Pramudita, Atanasia Pramudita, Krisna Eka Puspitarini, Erri Wahyu Putri, Jessica Ananda Putri, Natasya Kurnia Putu Gede Ari Krismantoro Rachmad Ary Ramadhan Ramadhan, Rachmad Ary Rendy - Resza Adistya Pangestu Rhiza Adiprabowo Rhiza Adiprabowo, Rhiza Richki Hardi Rijal, Khaidar Ahsanur Rivaldo Tito Lamberto Da Silva Rusdi, Jack Febrian Salmanarrizqie, Ageng Seftin Fitri Ana Wati Seftin Fitri Ana Wati Shofa Ramadhina Sigit Sigalayan Siti Hajar Binti Mohtar Slamet Kacung Slamet Kacung, Slamet Slamet Riyadi, Slamet Riyadi Stefanus Setiady SUMARDI Susilo, Yunus Sutrisno Sutrisno Syahroni Wahyu Iriananda, Syahroni Wahyu Tantyo Edo Wicaksana Tubagus Mohammad Akhriza Ullum, Choirul Wati, Seftin Fiti Ana Wati, Seftin Fitri Ana Widiya Nur Permata Yana Hendriana Yasin, Verdi Yomara Oktafamero Yoyon Arie Budi Suprio Yudi Kristyawan, Yudi Yunus Susilo Yustian Zandroto, Yosefin Yuniati Zangana, Hewa Majeed