p-Index From 2021 - 2026
13.55
P-Index
This Author published in this journals
All Journal International Journal of Public Health Science (IJPHS) Jurnal Ilmu Pertanian Indonesia Jurnal Ekonomi Pembangunan EKSAKTA: Journal of Sciences and Data Analysis JURNAL MATEMATIKA STATISTIKA DAN KOMPUTASI Jurnal Sains dan Teknologi Techno.Com: Jurnal Teknologi Informasi CAUCHY: Jurnal Matematika Murni dan Aplikasi JAM : Jurnal Aplikasi Manajemen Jurnal TIMES Jurnal Edukasi dan Penelitian Informatika (JEPIN) JUITA : Jurnal Informatika Kubik Journal of Accounting and Investment JURNAL KOLABORASI JIMKesmas (Jurnal Ilmiah Mahasiswa Kesehatan Masyarakat) Al-Jabar : Jurnal Pendidikan Matematika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Desimal: Jurnal Matematika Indonesian Journal of Artificial Intelligence and Data Mining BAREKENG: Jurnal Ilmu Matematika dan Terapan JOURNAL OF APPLIED INFORMATICS AND COMPUTING Journal of Socioeconomics and Development Jurnal Informatika Universitas Pamulang J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Teorema: Teori dan Riset Matematika Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam Jambura Journal of Mathematics ComTech: Computer, Mathematics and Engineering Applications Journal of Information System, Applied, Management, Accounting and Research Ecces: Economics, Social, and Development Studies Inferensi Journal of Data Science and Its Applications International Journal of Science, Engineering and Information Technology Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Jurnal Statistika dan Aplikasinya KUBIK: Jurnal Publikasi Ilmiah Matematika Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi MATH LOCUS: Jurnal Riset dan Inovasi Pendidikan Matematika PROFETIK: Jurnal Mahasiswa Pendidikan Agama Islam SRIWIJAYA JOURNAL OF ENVIRONMENT MATHunesa: Jurnal Ilmiah Matematika VARIANSI: Journal of Statistics and Its Application on Teaching and Research Aceh International Journal of Science and Technology Jurnal Sains dan Informatika : Research of Science and Informatic STATISTIKA Scientific Journal of Informatics Jurnal Pendidikan Progresif Indonesian Journal of Statistics and Its Applications Jurnal Info Kesehatan
Claim Missing Document
Check
Articles

Household Clustering in West Java Based on Stunting Risk Factors Using K-Modes and K-Prototypes Algorithms Yusran, Muhammad; Nuradilla, Siti; Putri, Mega Ramatika; Fitrianto, Anwar; Yudhianto, Rachmat Bintang
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11508

Abstract

Stunting remains one of Indonesia’s most persistent public health challenges, with West Java contributing the highest number of cases due to its large population and regional disparities in household welfare. Identifying household groups vulnerable to stunting is essential for designing targeted interventions that integrate nutrition, sanitation, and socio-economic development. This study introduces a data-driven clustering framework using the K-Modes and K-Prototypes algorithms to classify 22,161 households in West Java based on 26 indicators from the March 2024 National Socioeconomic Survey (SUSENAS), encompassing food security, sanitation, drinking water access, economic conditions, social assistance, and demographics. The K-Modes algorithm was applied to categorical data, while K-Prototypes integrated numerical and categorical variables, with parameter optimization performed using a grid search and the Elbow method. Clustering performance was evaluated through the Silhouette Score, Calinski–Harabasz Index, and Davies–Bouldin Index, followed by a bootstrapped stability analysis employing the Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI). Results show that K-Prototypes outperformed K-Modes, yielding a higher Silhouette Score (0.6681 compared to 0.2922), higher CH Index (13,890.6 compared to 3,976.1), and lower DBI (0.4607 compared to 1.5274), indicating superior compactness and separation. Stability testing confirmed strong robustness, with mean ARI = 0.959 and mean NMI = 0.932 across 50 bootstrap replications. The optimal five-cluster structure identified distinct socioeconomic groups, with the highest stunting risk found among households with low income, limited housing space, inadequate sanitation, and more children under five. The findings highlight the effectiveness of K-Prototypes in modeling mixed-type data and support the design of evidence-based, regionally adaptive stunting reduction strategies aligned with Presidential Regulation No. 72/2021 on the Acceleration of Stunting Reduction.
CLUSTER ANALYSIS OF MULTIVARIATE PANEL DATA ON DATA CONTAINING OUTLIERS Kapiluka, Kristuisno Martsuyanto; Wijayanto, Hari; Fitrianto, Anwar
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 20 No 1 (2026): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol20iss1pp0439-0452

Abstract

One clustering method for panel data is K-Means Longitudinal (KML), which considers only a single trajectory per subject over time. To address this limitation, KML was extended into K-Means Longitudinal 3D (KML3D), which enables clustering of joint or multivariate longitudinal data by considering multiple trajectories measured simultaneously for each subject. Both KML and KML3D provide new insights into clustering panel data using a non-hierarchical K-means approach. Hereinafter, this method is referred to as KML3D K-Means. KML3D K-Means implements the K-Means algorithm, specifically designed to cluster trajectories in panel data, and uses the mean as the clustering centroid. In practice, the K-Means algorithm is less effective in clustering data with outliers. This issue can be overcome by KML3D K-Medoids, a method based on KML3D that uses the median as the centroid. This study aims to determine cluster analysis for multivariate panel data on data containing outliers with KML3D K-Means and KML3D K-Medoids. Both methods are applied to panel data of social and welfare statistical data from 34 provinces observed for 8 years (2016 – 2023). The comparison of methods is based on the Calinski–Harabasz index. The results of the study show that KML3D K-Medoids has a Calinski-Harabasz index that is higher than KML3D K-Means in clustering multivariate panel data with outliers. The analysis identified three optimal clusters (k = 3) based on the Calinski–Harabasz (CH) index, which can be categorized as the “more prosperous”, “moderately prosperous”, and “less prosperous” groups. The growth rate analysis reveals disparities in development trajectories across clusters, with cluster 3 showing the most consistent improvements, cluster 1 moderate progress, and cluster 2 lagging in key social and welfare indicators.
POISSON MIXED MODELS WITH A BOOSTING APPROACH FOR THE ANALYSIS OF COUNT DATA Wulandari, Ita; Notodiputro, Khairil Anwar; Sartono, Bagus; Fitrianto, Anwar; Kurnia, Anang
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 20 No 1 (2026): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol20iss1pp0815-0828

Abstract

Boosting is a powerful technique for enhancing predictive accuracy by iteratively reweighting observations, and is particularly effective in high-dimensional settings and for variable selection. While previous studies have demonstrated the advantages of integrating boosting with generalized linear mixed models (GLMMs) for binary outcomes, its application to count data within hierarchical frameworks remains limited. This study addresses that gap by extending boosting methods to count data through the development of a boosted Poisson mixed model (bPMM), a novel approach for small area estimation and variable selection in complex survey designs. The proposed model is applied to fertility data in the Indonesian provinces of Bali and East Nusa Tenggara, where the response variable is the number of live births and the predictors include twenty-eight socio-demographic covariates. Using the Akaike Information Criterion (AIC) for model selection, three significant variables were identified in Bali (Model 1), and one in East Nusa Tenggara (Model 2). The results demonstrate that bPMM not only improves variable selection in high-dimensional settings but also accommodates hierarchical structure in count data.
Co-Authors -, Salsabila A. A., Muftih Aam Alamudi Abd. Rahman Adeline Vinda Septiani Agung Tri Utomo Agus M Soleh Agus Mohamad Soleh Ahmad Syauqi Alfa Nugraha Alfa Nugraha Pradana Alfa Nugraha Pradana Alfa Nugraha Pradana Alfa Nugraha Pradana Alfi Indah Nurrizqi Alifviansyah, Kevin Aliu, Mufthi Alwi ALIU, MUFTIH ALWI Amalia Kholifatunnisa Amanda, Nabila Amatullah, Fida Fariha Amelia, Reni Amir Abduljabbar Dalimunthe Anadra, Rahmi Anang Kurnia Anang Kurnia Angelia, Riza Rahmah Anik Djuraidah Anisa Nurizki Annissa Nur Fitria Fathina Ardhani, Rizky Aristawidya, Rafika Askari, M. Aiman Asri Pratiwi, Asri Assyifa Lala Pratiwi Hamid Azis, Tukhfatur Rizmah Aziza, Vivin Nur Bagus Sartono Budi Susetyo Bukhari, Ari Shobri Cahya Alkahfi Choon, Lai Ming Daswati, Oktaviyani Defri Ramadhan Ismana Deri Siswara Dessy Rotua Natalina Siahaan Dessy Siahaan Devi Permata Sari Dian Handayani Dwi Jumansyah, L.M. Risman Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Fadilah, Anggita Rizky Fahira, Fani Farit M Affendi Farit M. Afendi Farit M. Afendi Farit Mochamad Afendi Fatimah Fatimah Fauziah, Monica Rahma Fulazzaky, Tahira Ghina Fauziah Gustiara, Dela Hari Wijayanto Harismahyanti A., Andi Hasnataeni, Yunia Hasnita Hasnita Heri Cahyono I Made Sumertajaya Ilham Azagi Ilmani, Erdanisa Aghnia Imam Hanafi Indah, Yunna Mentari Indahwati Indahwati Indahwati Indahwati, Indahwati Irsyifa Mayzela Afnan Irzaman, Irzaman Ismah, Ismah Isna Shofia Mubarokah Iswan Achlan Setiawan Iswati Ita Wulandari Jamaluddin Rabbani Harahap Jap Ee Jia Jia, Jap Ee Jumansyah, L. M. Risman Dwi Jumansyah, L.M. Risman Dwi Kapiluka, Kristuisno Martsuyanto Khairil Anwar Notodiputro Khikmah, Khusnia Nurul Khusnia N. K. Khusnia Nurul Khikmah Kriswan, Suliana Kusman Sadik L.M. Risman Dwi Jumansyah La Ode Abdul Rahman La Ode Abdul Rahman Linganathan, Punitha lmam Hanafi M. Aiman Askari M.S, Erfiani Manaf, Silmi Annisa Rizki Marshelle, Sean Megawati Megawati Muftih Alwi Aliu Muftih Alwi Aliu Muhadi, Rizqi Annafi Muhammad Irfan Hanifiandi Kurnia Muhammad Yusran mutiah, siti Nabila Ghoni Trisno Hidayatulloh Nadira Nisa Alwani Nashir, Husnun Nisa Nur Aisyah Novi Hidayat Pusponegoro Nugraha, Adhiyatma Nur Hidayah Nur Khamidah NURADILLA, SITI Nurizki, Anisa Pangestika, Dhita Elsha Pika Silvianti Pradnya Sri Rahayu Pratiwi, Nafisa Berliana Indah Punitha Linganathan Putri Auliana Rifqi Mukhlashin Putri, Mega Ramatika Putri, Oktaviani Aisyah Rafika Aufa Hasibuan Rahmatun Nisa, Rahmatun Rais Ramadhan, Syaifullah Yusuf Reka Agustia Astari Reni Amelia Reni Amelia Retna Nurwulan Riansyah, Boy Rifda Nida’ul Labibah Riska Yulianti, Riska Rizki Manaf, Silmi Anisa Rizki, Akbar Rizqi, Tasya Anisah Sachnaz Desta Oktarin salsa bila Sari, Jefita Resti Seta Baehera Setyowati, Silfiana Lis Siau Hui Mah Siau Man Mah Silmi Annisa Rizki Manaf Siregar, Indra Rivaldi Siti Hafsah Siti Hasanah Siti Nur Azizah, Siti Nur Sofia Octaviana Sony Hartono Wijaya Suantari, Ni Gusti Ayu Putu Puteri Suliana Kriswan Tangke, Nabillah Rahmatiah Titin Agustina Titin Yuniarty Yuniarty Uswatun Hasanah Utami Dyah Syafitri Utami, Annisa Putri Vitona, Desi Vivin Nur Aziza Waliulu, Megawati Zein Wan Muhamad, Wan Zuki Azman Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Waode, Yully Sofyah Winata, Hilma Mutiara Xin, Sim Hui Yenni Angraini Yudhianto, Rachmat Bintang Yuniarsyih R.A, Rizqi Dwi Yusuf, Fajar Athallah Zaenal, Mohamad Solehudin Zahid, Muhammad Farhan Zahra, Latifah Zein Rizky Santoso