p-Index From 2020 - 2025
13.096
P-Index
This Author published in this journals
All Journal International Journal of Public Health Science (IJPHS) Jurnal Ilmu Pertanian Indonesia Jurnal Ekonomi Pembangunan JURNAL MATEMATIKA STATISTIKA DAN KOMPUTASI Jurnal Sains dan Teknologi Techno.Com: Jurnal Teknologi Informasi CAUCHY: Jurnal Matematika Murni dan Aplikasi JAM : Jurnal Aplikasi Manajemen Jurnal TIMES Jurnal Edukasi dan Penelitian Informatika (JEPIN) JUITA : Jurnal Informatika Kubik Journal of Accounting and Investment JURNAL KOLABORASI JIMKesmas (Jurnal Ilmiah Mahasiswa Kesehatan Masyarakat) Al-Jabar : Jurnal Pendidikan Matematika Desimal: Jurnal Matematika Indonesian Journal of Artificial Intelligence and Data Mining BAREKENG: Jurnal Ilmu Matematika dan Terapan JOURNAL OF APPLIED INFORMATICS AND COMPUTING Journal of Socioeconomics and Development Jurnal Informatika Universitas Pamulang J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Teorema: Teori dan Riset Matematika Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam Jambura Journal of Mathematics ComTech: Computer, Mathematics and Engineering Applications Ecces: Economics, Social, and Development Studies Inferensi Journal of Data Science and Its Applications International Journal of Science, Engineering and Information Technology Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Jurnal Statistika dan Aplikasinya KUBIK: Jurnal Publikasi Ilmiah Matematika Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi MATH LOCUS: Jurnal Riset dan Inovasi Pendidikan Matematika PROFETIK: Jurnal Mahasiswa Pendidikan Agama Islam SRIWIJAYA JOURNAL OF ENVIRONMENT MATHunesa: Jurnal Ilmiah Matematika VARIANSI: Journal of Statistics and Its Application on Teaching and Research Aceh International Journal of Science and Technology Jurnal Sains dan Informatika : Research of Science and Informatic STATISTIKA Scientific Journal of Informatics Jurnal Pendidikan Progresif Indonesian Journal of Statistics and Its Applications Jurnal Info Kesehatan
Claim Missing Document
Check
Articles

The Comparison between Ordinal Logistic Regression and Random Forest Ordinal in Identifying the Factors Causing Diabetes Mellitus Assyifa Lala Pratiwi Hamid; Anwar Fitrianto; Indahwati Indahwati; Erfiani Erfiani; Khusnia Nurul Khikmah
Jambura Journal of Mathematics Vol 5, No 2: August 2023
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjom.v5i2.20289

Abstract

Diabetes is one of the high-risk diseases. The most prominent symptom of this disease is high blood sugar levels. People with diabetes in Indonesia can reach 30 million people. Therefore, this problem needs further research regarding the factors that cause it. Further analysis can be done using ordinal logistic regression and random forest. Both methods were chosen to compare the modelling results in determining the factors causing diabetes conducted in the CDC dataset. The best model obtained in this study is ordinal logistic regression because it generates an accuracy value of 84.52%, which is higher than the ordinal random forest. The four most important variables causing diabetes are body mass index, hypertension, age, and cholesterol.
Penerapan Metode K-Medoids dalam Pengklasteran Kab/Kota di Provinsi Jawa Barat Berdasarkan Intensitas Bencana Alam di Jawa Barat pada Tahun 2020-2021 Adeline Vinda Septiani; Rafika Aufa Hasibuan; Anwar Fitrianto; Erfiani; Alfa Nugraha Pradana
Statistika Vol. 23 No. 2 (2023): Statistika
Publisher : Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/statistika.v23i2.3057

Abstract

ABSTRAK Mengidentifikasi objek atau individu yang seragam merupakan salah satu metode analisis yaitu analisis cluster. Analisis cluster berkerja dengan cara mengidentifikasi individu yang seragam berdasarkan peubah tertentu dengan mempertimbangkan karakteristik yang dimiliki dari setiap objek dan memaksimalkan persamaan antar objek tersebut ke satu cluster dan meminimalkan persamaan antar cluster. Pendekatan analisis cluster terbagi menjadi dua yaitu, pendekatan hirarki dan pendekatan partisi. Pada riset ini, menggunakan skema yang dilakukan dengan pendekatan partisi dengan metode K-Medoids. K-Medoids ialah pengembangan dari metode k-means, dimana proses ini dapat mengatasi ketidakmampuan k-means dalam mengatasi outliers. Informasi pada penelitian ini menggunakan data Potensi Desa (Podes) di Provinsi Jawa Barat dengan 27 kab/kota pada tahun 2020-2021 dengan variabel yang digunakan adalah intensitas/banyaknya kejadian bencana yang terjadi selama tahun 2020-2021 di kab/kota di Provinsi Jawa Barat. Dari hasil analisis menggunakan  grafik elbow bahwa pengelompokkan menggunakan K-Medoids cluster yang terbaik adalah 2 cluster, sehingga 27 kab/kota diklasifikasikan ke dalam 2 cluster. Berdasarkan analisis K-Medoids kab/kota yang masuk ke dalam cluster 1 terdiri dari 21 kab/kota yang terdiri dari Kota Bandung, Bekasi, Kota Ciamis, Cirebon, Indramayu, Kuningan, Bandung, Kota Banjar, Kota Bekasi, Kota Bogor, Cimahi, Kota Cirebon, Kota Depok, Kota Sukabumi, Kota Tasikmalaya, Karawang, Majalengka, Pangandaran, Purwakarta, Subang, Sumedang. Kab/kota yang tergolong ke dalam cluster 1 ialah kab/kota yang tidak rentan terhadap bencana alam sedangkan kab/kota yang masuk ke dalam cluster 2 atau kab/kota yang rentan terhadap bencana alam terdiri dari Bandung Barat, Bogor,Cianjur, Garut, Sukabumi dan Tasikmalaya. ABSTRACT Identifying uniform objects or individuals is a method of one analysis, namely cluster analysis. Cluster analysis works by identifying uniform individuals based on certain variables by considering the characteristics of each object and maximizing the similarities between these objects to one cluster and minimizing similarities between clusters. The cluster analysis approach is divisible into two, specifically the hierarchical approach and the partition approach. In this study, the oncoming used is a partition approach using the K-Medoids method. K-Medoids is a development of the k-means method, where this method can get over the inability of k-means to deal with outliers. The information in this research uses Village Potential (Podes) data in West Java Province with 27 districts/cities in 2020-2021 with the variables used being the intensity/number of natural disasters that occurred during 2020-2021 in districts/cities in West Java Province. From results of the analysis based on the elbow graph, the best grouping using K-Medoids clusters is 2 clusters, so that 27 districts/cities are classified into 2 clusters. Based on K-Medoids analysis, the districts/cities included in cluster 1 consist of 21 districts/cities consisting of Bandung, Bekasi, Ciamis, Cirebon, Indramayu, Karawang, Bandung City, Banjar City, Bekasi City, Bogor City, Cimahi City, Cirebon City, Depok City, Sukabumi City, Tasikmalaya City, Kuningan, Majalengka, Pangandaran, Purwakarta, Subang, Sumedang. Districts/cities that are included in cluster 1 are districts/cities that are not vulnerable to natural disasters, while districts/cities that are part in cluster 2 or districts/cities that are vulnerable to natural disasters consist of West Bandung, Bogor, Cianjur, Garut, Sukabumi and Tasikmalaya.
Agglomerative Nesting Cluster Analyst in Mapping District/City Health Facilities in West Java Province Nadira Nisa Alwani; Megawati Megawati; Anwar Fitrianto; Erfiani Erfiani; Alfa Nugraha Pradana
Jurnal Matematika, Statistika dan Komputasi Vol. 20 No. 3 (2024): May 2024
Publisher : Department of Mathematics, Hasanuddin University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20956/j.v20i3.32043

Abstract

The use of Hierarchical Clustering is used to group districts or cities in West Java according to the number of health facilities, distance to health facilities and population density using Agglomerative Nesting (AGNES). Clustering in this study utilizes complete linkage clustering. The elbow method produces two optimal clusters which are then validated with the sillhoute coefficient and Calinski-Harabasz. In this study, there are 27 variables in the form of health facilities spread across 27 regencies/cities in West Java in 2021. The results of the cluster analysis formed in this study are 18 districts/cities in cluster  one and 9 districts/cities in cluster two
PENERAPAN MULTI-CLUSTERING DALAM PENGELOMPOKAN KABUPATEN/KOTA DI PROVINSI JAWA BARAT BERDASARKAN INDEKS DESA MEMBANGUN Nur Khamidah; Reka Agustia Astari; Anwar Fitrianto; Erfiani Erfiani; Alfa Nugraha Pradana
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 4 No. 3 (2023): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v4i3.459

Abstract

Cluster analysis is a statistical learning technique that aims to uncover hidden patterns in data by grouping it based on known explanatory variables. In multi-clustering algorithms, similar data in different sub-dimensions of categories are initially grouped separately and then re-categorized based on the obtained clusters, resulting in a more exploratory grouping. This research aims to conduct exploratory analysis of regencies/cities in West Java based on the Village Development Index (Indeks Desa Membangun/IDM), which consists of three sub-dimensions: Social Resilience Index, Economic Index, and Environmental Index. It also aims to observe how the regencies/cities in West Java are grouped based on these indices using a multi-clustering algorithm with KMeans for each sub-dimension. From the exploration and analysis results, regencies/cities are clustered based on the three sub-dimensions. Additionally, recommendations are obtained suggesting that the equal distribution of educational facilities, addressing crime rates, improving economic infrastructure, and enhancing environmental quality should be priorities for the government of West Java province
PENGGEROMBOLAN KECAMATAN DI PROVINSI JAWA BARAT BERDASARKAN AKSES PENDIDIKAN MENENGAH ATAS (SMA-SEDERAJAT) DENGAN K-PROTOTYPES Sofia Octaviana; Ahmad Syauqi; Anwar Fitrianto; Erfiani Erfiani; Alfa Nugraha Pradana
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 1 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i1.478

Abstract

Education is an important element for the Indonesian nation and must be felt by all citizens. The availability of educational facilities is important for the realization of overall educational equality for the Indonesian people. The aim of this research is to group sub-districts in West Java Province according to their level of access to Senior High School (SHS-equivalent). The data included in this study comprises both numerical and categorical variables, which were obtained from the 2021 Village Potential Data Collection (PODES) conducted by the Central Statistics Agency. A cluster analysis method that can be used to group objects based on numerical and categorical data is K-Prototypes. The results of the grouping divide the data into 2 groups, where the first group has the characteristics of an urban subdistrict, the topographic area is plain, access to the nearest high school is very easy, and has an average number of high school and equivalent schools of 22 schools per subdistrict, and has an average distance to the nearest high school of 1,86 km. Meanwhile, the second group has the characteristics of subdistricts with rural areas, topography in the form of slopes, easy access to the nearest high school, and has an average number of high schools of 7 per subdistrict, and the average distance to the nearest high school is 4,06 km. The second group is sub-districts that need to be given special attention because they have relatively fewer high schools and the distance to the nearest high school is further
Village Potential Mapping: Comprehensive Cluster Analysis of Continuous and Categorical Variables with Missing Values and Outliers Dataset in Bogor, West Java, Indonesia Nafisa Berliana Indah Pratiwi; Indahwati; Anwar Fitrianto
Scientific Journal of Informatics Vol. 11 No. 2: May 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i2.3903

Abstract

Purpose: This research emphasizes the need to map villages' conditions and identify village potentials, evaluate the effectiveness of development capability, and address the rural-urban development gap with clustering algorithms. The study employs the village development index (IPD) indicators obtained from the village potential dataset, with various numerical and categorical indicators, to capture both tangible and intangible aspects of village potential. Challenges such as missing data and outliers in IPD data collection can be found. The study aims to evaluate the effectiveness of clustering algorithms, with integrated and separated imputation processes, in handling these data issues and to track the development of villages in the Bogor Regency, West Java, Indonesia, based on the village’s potential (PODES) dataset. Methods: Three clustering algorithms, such as k-prototype, simple k-medoids, and Clustering of Mixed Numerical and Categorical Data with Missing Values (k-CMM) are compared. The pre-processing data, which is the imputation process for the first two algorithms, is conducted separately, while the k-CMM has an integrated imputation process. Both imputation stages are tree-based algorithms. Cluster evaluation is based on internal criteria and external criteria. Clusters resulting from the k-prototype and simple k-medoids are selected by internal validity indices and compared to k-CMM using external validity indices for several numbers of clusters (k = 3,4,5). Result: According to data exploration, the IPD of Bogor Regency, West Java, Indonesia dataset contains ± 5% of outliers and six missing values in some chosen variables. Tree-based imputation methods are applied separately in k-prototype and simple k-medoids, jointly in k-CMM. Based on the elbow and gap statistics methods, this research aims to determine the optimum number of clusters k = 3. The internal validity indices performed on k-prototype and simple k-medoids resulting in three clusters (k = 3) are optimum. Trials on several clusters (k = 3,4,5) for three algorithms show that the k-prototype with k = 3 performs the best and is most stable among the two other algorithms with IPD datasets containing many outliers; external validity indices evaluate cluster results. Novelty: This research addresses issues commonly found in mixed datasets, including outliers and missing values, and how to treat problems before and during cluster analysis. An improvement of Gower distance is applied in the medoid-based clustering algorithm, and the k-CMM algorithm is the first algorithm to integrate the imputation process and clustering analysis, which is interesting to explore this algorithm’s performance in clustering analysis.
Performance of Ensemble Learning in Diabetic Retinopathy Disease Classification Anisa Nurizki; Anwar Fitrianto; Agus Mohamad Soleh
Scientific Journal of Informatics Vol. 11 No. 2: May 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i2.4725

Abstract

Purpose: This study explores diabetic retinopathy (DR), a complication of diabetes leading to blindness, emphasizing early diagnostic interventions. Leveraging Macular OCT scan data, it aims to optimize prevention strategies through tree-based ensemble learning. Methods: Data from RSKM Eye Center Padang (October-December 2022) were categorized into four scenarios based on physician certificates: Negative & non-diagnostic DR versus Positive DR, Negative versus Positive DR, Non-Diagnosis versus Positive DR, and Negative DR versus non-Diagnosis versus Positive DR. The suitability of each scenario for ensemble learning was assessed. Class imbalance was addressed with SMOTE, while potential underfitting in random forest models was investigated. Models (RF, ET, XGBoost, DRF) were compared based on accuracy, precision, recall, and speed. Results: Tree-based ensemble learning effectively classifies DR, with RF performing exceptionally well (80% recall, 78.15% precision). ET demonstrates superior speed. Scenario III, encompassing positive and undiagnosed DR, emerges as optimal, with the highest recall and precision values. These findings underscore the practical utility of tree-based ensemble learning in DR classification, notably in Scenario III. Novelty: This research distinguishes itself with its unique approach to validating tree-based ensemble learning for DR classification. This validation was accomplished using Macular OCT data and physician certificates, with ETDRS scores demonstrating promising classification capabilities.
Comparison of Extremely Randomized Survival Trees and Random Survival Forests: A Simulation Study Mohamad Solehudin Zaenal; Anwar Fitrianto; Hari Wijayanto
Scientific Journal of Informatics Vol. 11 No. 3: August 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i3.8464

Abstract

Abstract. Purpose: This simulation study investigates the Extremely Randomized Survival Trees (EST) model, a machine learning technique expected to handle survival analysis, particularly in large survival datasets, effectively. The study compares the performance of the EST model with that of the Random Survival Forest (RSF) model, focusing on the C-index value to determine which model performs better. Methods: The analysis begins with the generation of 540 simulated datasets, created by combining three levels of sample sizes, two levels of censoring proportions, three types of hazard functions, and 30 repetitions for each scenario. The simulation data were split into 80% training and 20% testing data. The training data were used to build the EST and RSF models, while the test data were used to evaluate their performance. The model with the highest C-index value was deemed the best performer, as a higher C-index indicates superior model performance. Result: The results indicate that the sample size, type of hazard function, and the method used influence that model performance. The EST model significantly outperformed the RSF model when the sample size was large, though no significant difference was observed when the sample size was small or medium. Additionally, the EST model consistently demonstrated faster computation times across all simulation scenarios. Novelty: This study provides a pioneering exploration into applying decision tree algorithms, specifically EST and RSF, in survival analysis. While these methods have been extensively studied in regression and classification contexts, their application in survival analysis remains relatively unexplored.
Multiple Classifier System for Handling Imbalanced and Overlapping Datasets on Multiclass Classification Dessy Siahaan; Anwar Fitrianto; Khairil Anwar Notodiputro
ComTech: Computer, Mathematics and Engineering Applications Vol. 15 No. 1 (2024): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v15i1.11295

Abstract

The performance of classification models suffer when the dataset contains imbalanced and overlapping data. These two conditions are already challenging separately and even more complex if they occur together. In the research, an ensemble method called a Multiple Classifier System was proposed to address these issues by combining K-Nearest Neighbour and Logistic Regression. The Synthetic Minority Oversampling Technique (SMOTE) method was also applied to balance the dataset. The One Versus One (OVO) decomposition technique helped the multiclass classification process. A simulation with 18 scenarios proves that the MCS-SMOTE model can handle these problems by providing good performance. The model’s performance is also tested using empirical data on Poverty in West Java in 2021. Empirical data also show that the proposed method performs well, with an accuracy rate of 80.09%, an F1 score of 0.782, and a G-Mean of 0.242. The areas with the highest poverty rates are Bogor, Bekasi City, Bandung City, Bekasi Regency, and Depok City, located near DKI Jakarta, the capital city. Based on existing predictor variables, poor households in West Java are more likely to occur when they do not have access to credit, the number of household members is more than three, multiple families live in one building, and the head of the household has not graduated from elementary school.
DAMPAK PELAKSANAAN SHALAT DHUHA TERHADAP EMOTIONAL QUOTIENT SISWA SMK MUHAMMADIYAH 1 KALIREJO LAMPUNG TENGAH Fitrianto, Anwar; Cahyono, Heri; Iswati
PROFETIK: Jurnal Mahasiswa Pendidikan Agama Islam Vol. 4 No. 2 (2024): JANUARI-JUNI
Publisher : Universitas Muhammadiyah Metro

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Banyak orang yang memandang sebelah mata mengenai Emotional Quotient, mereka masih menganggap bahwa kecerdasan intelektual sebagai kecerdasan tunggal dalam menentukan kesuksesan hidup seseorang. Hal ini menjadikan banyak orang mengesampingkan kecerdasan emosionalnya. Penelitian ini bertujuan untuk mengkaji dan menganalisis apakah pelaksanaan dari shalat dhuha yang dijadikan program rutin oleh SMK Muhammadiyah 1 Kalirejo Lampung Tengah memiliki dampak yang baik terhadap emotional quotient peserta didik. Penelitian ini menggunakan metode penelitian kualitatif dengan jenis pendekatan fenomenologi. Teknik pengumpulan data dilakukan dengan tiga cara yaitu: wawancara, observasi, dan dokumentasi. Teknis analisis data menggunakan pengumpulan data, reduksi data, pemaparan teori, penyajian data dan penarikan kesimpulan. Adanya dampak yang sangat positif terhadap Emotoinal Quotient siswa di kelas XI bahwa shalat dhuha dapat mengendalikan kecakapan emosional, membuat para siswa memiliki rasa peduli dan sabar, sifat sabar yang berkaitan dengan kecerdasan emosional yang juga tertera dalam Al - Quran kita yang merupakan pembelajaran bagi manusia agar dapat mengembangkan kecerdasan emosionalnya. Pelaksanaan shalat dhuha di SMK Muhammadiyah 1 Kalirejo Lampung Tengah memiliki dampak yang positif bagi organ penting manusia, yakni berdampak baik bagi Emotional Quotient siswa. Dan para siswa lebih berani mengekspresikan diri di hadapan temen-temenya, saling bekerja sama dan memiliki cara dalam mengendalikan emosi mereka sendiri.
Co-Authors A. A., Muftih Aam Alamudi Abd. Rahman Adeline Vinda Septiani Agung Tri Utomo Agus M Soleh Agus Mohamad Soleh Ahmad Syauqi Alfa Nugraha Alfa Nugraha Pradana Alfa Nugraha Pradana Alfa Nugraha Pradana Alfa Nugraha Pradana Alfi Indah Nurrizqi Aliu, Mufthi Alwi ALIU, MUFTIH ALWI Amalia Kholifatunnisa Amanda, Nabila Amatullah, Fida Fariha Amelia, Reni Amir Abduljabbar Dalimunthe Anadra, Rahmi Anang Kurnia Anang Kurnia Anik Djuraidah Anisa Nurizki Annisa Putri Utami Annissa Nur Fitria Fathina Ardhani, Rizky Aristawidya, Rafika Asri Pratiwi, Asri Assyifa Lala Pratiwi Hamid Azis, Tukhfatur Rizmah Aziza, Vivin Nur Bagus Sartono Budi Susetyo Budi Susetyo Budi Susetyo Budi Susetyo Bukhari, Ari Shobri Cahya Alkahfi Daswati, Oktaviyani Defri Ramadhan Ismana Deri Siswara Dessy Rotua Natalina Siahaan Dessy Siahaan Devi Permata Sari Dian Handayani Dwi Jumansyah, L.M. Risman Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Fadilah, Anggita Rizky Fajar Athallah Yusuf Farit M Affendi Farit M. Afendi Farit Mochamad Afendi Fatimah Fatimah Fauziah, Monica Rahma Fulazzaky, Tahira Ghina Fauziah Gustiara, Dela Hari Wijayanto Harismahyanti A., Andi Hasnataeni, Yunia Hasnita Hasnita Heri Cahyono I Made Sumertajaya Ilham Azagi Ilmani, Erdanisa Aghnia Imam Hanafi Indah, Yunna Mentari Indahwati Indahwati Indahwati Indahwati, Indahwati Irsyifa Mayzela Afnan Irzaman, Irzaman Ismah, Ismah Isna Shofia Mubarokah Iswan Achlan Setiawan Iswati Jamaluddin Rabbani Harahap Jap Ee Jia Jia, Jap Ee Jumansyah, L. M. Risman Dwi Jumansyah, L.M. Risman Dwi Khairil Anwar Notodiputro Khikmah, Khusnia Nurul Khusnia N. K. Khusnia Nurul Khikmah Kriswan, Suliana Kusman Sadik L.M. Risman Dwi Jumansyah L.M. Risman Dwi Jumansyah La Ode Abdul Rahman La Ode Abdul Rahman Lai Ming Choon Linganathan, Punitha lmam Hanafi M. Aiman Askari M.S, Erfiani Marshelle, Sean Megawati Megawati Mohamad Solehudin Zaenal Muftih Alwi Aliu Muftih Alwi Aliu Muhadi, Rizqi Annafi Muhammad Farhan Zahid Muhammad Irfan Hanifiandi Kurnia mutiah, siti Nabila Ghoni Trisno Hidayatulloh Nadira Nisa Alwani Nafisa Berliana Indah Pratiwi Nashir, Husnun Nisa Nur Aisyah Novi Hidayat Pusponegoro Nugraha, Adhiyatma Nur Hidayah Nur Khamidah Pangestika, Dhita Elsha Pika Silvianti Pika Silvianti Pradnya Sri Rahayu Punitha Linganathan Putri Auliana Rifqi Mukhlashin Putri, Oktaviani Aisyah Rachmat Bintang Yudhianto Rafika Aufa Hasibuan Rahmatun Nisa, Rahmatun Rais Reka Agustia Astari Reni Amelia Reni Amelia Retna Nurwulan Riansyah, Boy Rifda Nida’ul Labibah Riska Yulianti, Riska Rizki Manaf, Silmi Anisa Rizki, Akbar Rizqi, Tasya Anisah Sachnaz Desta Oktarin salsa bila Seta Baehera Setyowati, Silfiana Lis Siau Hui Mah Siau Man Mah Silmi Annisa Rizki Manaf Silmi Annisa Rizki Manaf Siregar, Indra Rivaldi Siti Hafsah Siti Hasanah Siti Nur Azizah, Siti Nur Sofia Octaviana Sony Hartono Wijaya Suantari, Ni Gusti Ayu Putu Puteri Suliana Kriswan Tahira Fulazzaky Titin Agustina Titin Yuniarty Yuniarty Uswatun Hasanah Utami Dyah Syafitri Vitona, Desi Vivin Nur Aziza Waliulu, Megawati Zein Wan Muhamad, Wan Zuki Azman Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Waode, Yully Sofyah Winata, Hilma Mutiara Xin, Sim Hui Yenni Angraini Yuniarsyih R.A, Rizqi Dwi Zein Rizky Santoso