p-Index From 2021 - 2026
13.55
P-Index
This Author published in this journals
All Journal International Journal of Public Health Science (IJPHS) Jurnal Ilmu Pertanian Indonesia Jurnal Ekonomi Pembangunan EKSAKTA: Journal of Sciences and Data Analysis JURNAL MATEMATIKA STATISTIKA DAN KOMPUTASI Jurnal Sains dan Teknologi Techno.Com: Jurnal Teknologi Informasi CAUCHY: Jurnal Matematika Murni dan Aplikasi JAM : Jurnal Aplikasi Manajemen Jurnal TIMES Jurnal Edukasi dan Penelitian Informatika (JEPIN) JUITA : Jurnal Informatika Kubik Journal of Accounting and Investment JURNAL KOLABORASI JIMKesmas (Jurnal Ilmiah Mahasiswa Kesehatan Masyarakat) Al-Jabar : Jurnal Pendidikan Matematika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Desimal: Jurnal Matematika Indonesian Journal of Artificial Intelligence and Data Mining BAREKENG: Jurnal Ilmu Matematika dan Terapan JOURNAL OF APPLIED INFORMATICS AND COMPUTING Journal of Socioeconomics and Development Jurnal Informatika Universitas Pamulang J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Teorema: Teori dan Riset Matematika Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam Jambura Journal of Mathematics ComTech: Computer, Mathematics and Engineering Applications Journal of Information System, Applied, Management, Accounting and Research Ecces: Economics, Social, and Development Studies Inferensi Journal of Data Science and Its Applications International Journal of Science, Engineering and Information Technology Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Jurnal Statistika dan Aplikasinya KUBIK: Jurnal Publikasi Ilmiah Matematika Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi MATH LOCUS: Jurnal Riset dan Inovasi Pendidikan Matematika PROFETIK: Jurnal Mahasiswa Pendidikan Agama Islam SRIWIJAYA JOURNAL OF ENVIRONMENT MATHunesa: Jurnal Ilmiah Matematika VARIANSI: Journal of Statistics and Its Application on Teaching and Research Aceh International Journal of Science and Technology Jurnal Sains dan Informatika : Research of Science and Informatic STATISTIKA Scientific Journal of Informatics Jurnal Pendidikan Progresif Indonesian Journal of Statistics and Its Applications Jurnal Info Kesehatan
Claim Missing Document
Check
Articles

Perbandingan Algoritma Pohon dengan Beberapa Skenario Pelabelan untuk Analisis Sentimen pada Aplikasi Milik Pemerintah/BUMN Fitrianto, Anwar; Rizki Manaf, Silmi Anisa; Soleh, Agus Mohamad
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 10, No 1 (2024): Volume 10 No 1
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v10i1.73512

Abstract

Berkembangnya era digitalisasi mengakibatkan banyaknya inovasi yang diupayakan untuk mempermudah aktivitas masyarakat di berbagai bidang, salah satunya yaitu adanya aplikasi yang menunjang agar menjadi lebih efisien dan dapat diakses dari mana saja. Aplikasi milik pemerintah dan BUMN sebagai perusahaan berskala nasional cenderung belum banyak diketahui dan banyak yang memiliki rating rendah disertai dengan berbagai macam ulasan pengguna aplikasi. Analisis sentimen merupakan analisis yang cocok untuk menganalisis ulasan dari aplikasi yang dipilih. Data yang digunakan adalah ulasan aplikasi InfoBMKG, BPOM Mobile, MyIndihome, dan MyPertamina. Penelitian bertujuan untuk membandingkan performa algoritma double random forest   dan algoritma berbasis pohon lain yaitu decision tree, extra trees, dan random forest berdasarkan tingkat ketepatan performa akurasi model. Pelabelan data berdasarkan rating aplikasi, lexicon-based, dan sentiment scoring dengan peubah prediktor dihasilkan dari tokenisasi unigram yang diberi bobot dengan TF-IDF. Setiap observasi data dikategorikan ke dalam kelas positif, netral, dan negatif. Hasil penelitian menunjukkan algoritma extra trees dan metode pelabelan sentiment scoring mampu menghasilkan performa terbaik dengan nilai rata-rata akurasi mencapai 80 "“ 84% pada tiap aplikasi yang dipilih.
Eksplorasi dan Klasifikasi K-NN Terhadap Kejadian Luar Biasa Diare di Jawa Barat Fulazzaky, Tahira; Waode, Yully Sofyah; Fitrianto, Anwar; Erfiani, Erfiani; Pradana, Alfa Nugraha
Techno.Com Vol. 22 No. 4 (2023): November 2023
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/tc.v22i4.9281

Abstract

Tujuan dari penelitian ini adalah untuk mengkaji bagaimana kualitas air dan sanitasi mempengaruhi Kejadian Luar Biasa (KLB) Diare di Provinsi Jawa Barat, Indonesia, menggunakan data Pendataan Potensi Desa (PODES) tahun 2021. Diare merupakan permasalahan serius dalam kesehatan masyarakat Indonesia, terutama pada kelompok anak balita, dan salah satu faktor penyebab utamanya adalah rendahnya kualitas air dan sanitasi. Dalam konteks penelitian ini, kami menerapkan metode algoritma K-Nearest Neighbors (K-NN) untuk mengklasifikasikan wilayah-wilayah yang mengalami KLB Diare. Hasil eksplorasi data menunjukkan variasi yang signifikan dalam jumlah kasus diare di sejumlah kabupaten dan kota yang tersebar di wilayah Jawa Barat. Untuk menangani masalah ketidakseimbangan data, kami menerapkan teknik Pengurangan Acak (Random Under Sampling), Penambahan Acak (Random Over Sampling), dan Synthetic Minority Oversampling Technique (SMOTE).Hasil analisis menunjukkan bahwa model K-NN dengan penggunaan metode SMOTE menghasilkan tingkat akurasi tertinggi, yaitu sebesar 71.28%. Meskipun demikian, nilai F1 score untuk semua model cenderung rendah, yang mengindikasikan adanya tantangan dalam mengklasifikasikan wilayah-wilayah dengan KLB Diare. Penelitian ini memberikan wawasan yang penting mengenai korelasi antara kualitas air, sanitasi, dan KLB Diare di Jawa Barat, serta mengidentifikasi wilayah-wilayah yang memerlukan perhatian lebih dalam upaya pencegahan dan pengendalian penyakit diare. Hasil ini dapat digunakan sebagai dasar untuk merancang program-program kesehatan yang lebih efektif di daerah-daerah dengan tingkat insiden diare yang tinggi. Kata kunci: Algoritma K-Nearest Neighbors (K-NN), SMOTE, Ketidakseimbangan data dan teknik pengambilan sampel ulang, Kualitas air dan sanitasi, Program pencegahan dan pengendalian diare.
Perbandingan Metode Complete Linkage, Average Linkage dan Ward’s untuk Pengelompokan Ketahanan Pangan di Provinsi Jawa Timur Amanda, Nabila; Yulianti, Riska; Fitrianto, Anwar; Erfiani; JUMANSYAH, L.M. RISMAN DWI
MATHunesa: Jurnal Ilmiah Matematika Vol. 13 No. 1 (2025)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathunesa.v13n1.p227-235

Abstract

Provinsi Jawa Timur merupakan produsen utama padi nasional dengan total produksi mencapai 9,59 juta ton pada tahun 2023, yang memainkan peran penting dalam memenuhi kebutuhan pangan Indonesia. Namun, disparitas indikator ketahanan pangan di beberapa kabupaten/kota masih menjadi perhatian, di mana beberapa wilayah dikhawatirkan masuk dalam kategori rawan pangan. Penelitian ini berfokus pada analisis clustering untuk mengelompokkan ketahanan pangan kabupaten/kota di Jawa Timur dengan membandingkan tiga metode agglomerative hierarchical clustering, yakni complete linkage, average linkage, dan ward’s. Data yang digunakan terdiri dari 12 variabel terkait ketahanan pangan, seperti produksi padi, konsumsi kalori, akses listrik, umur harapan hidup, prevalensi stunting dan lain-lain. Ketiga metode dievaluasi menggunakan koefisien cophenetic yang menghasilkan bahwa metode average linkage memiliki performa terbaik dengan nilai cophenetic sebesar 0,859 yang mengindikasikan ketepatan representasi data yang tinggi. Metode ini mengelompokkan wilayah Jawa Timur menjadi tiga cluster dengan kategori rentan pangan, tahan pangan, rawan pangan yang mampu memberikan informasi penting bagi pengambilan kebijakan.
Comparing Outlier Detection Methods using Boxplot Generalized Extreme Studentized Deviate and Sequential Fences Fitrianto*, Anwar; Wan Muhamad, Wan Zuki Azman; Kriswan, Suliana; Susetyo, Budi
Aceh International Journal of Science and Technology Vol 11, No 1 (2022): April 2022
Publisher : Graduate School of Universitas Syiah Kuala

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.13170/aijst.11.1.23809

Abstract

Outliers identification is essential in data analysis since it can make wrong inferential statistics. This study aimed to compare the performance of Boxplot, Generalized Extreme Studentized Deviate (Generalized ESD), and Sequential Fences method in identifying outliers. A published dataset wasused in the study. Based on preliminary outlier identification, the data did not contain outliers. Each outlier detection method'sperformance was evaluated by contaminating the original data with few outliers. The contaminations were conducted by replacing the two smallest and largest observations with outliers. The analysis was conducted using SAS version 9.2 for both original and contaminated data. We found that Sequential Fences have outstanding performance in identifying outliers compared to Boxplot and Generalized ESD.
PERBANDINGAN ANALISIS REGRESI LOGISTIK BINER DAN NAÏVE BAYES CLASSIFIER UNTUK MEMPREDIKSI FAKTOR RESIKO DIABETES Aristawidya, Rafika; Indahwati, Indahwati; Erfiani, Erfiani; Fitrianto, Anwar; A. A., Muftih
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 2 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i2.617

Abstract

Diabetes is a global health problem that is increasing in prevalence worldwide. This study compares the performance of two data analysis methods, namely binary logistic regression and naïve bayes classifier in predicting diabetes risk. This study aims to identify factors that significantly affect diabetes risk and classify diabetes risk using binary logistic regression, then compare the classification with the naive bayes classifier algorithm. Binary logistic regression models the relationship between independent predictor variables and binary dependent variables, while naïve bayes classifier uses the assumption of independence between variables. In this study, both methods were evaluated based on accuracy, sensitivity, specificity and positive predictive value. The results show that the factors that influence the risk of diabetes are Age, Gender, Polyuria, Polydipsia, Genital thrush, Itching, Irritability, and Partial paresis. Furthermore, the binary logistic regression results have a higher classification accuracy (92.31%) compared to the naïve bayes classifier (84.61%). Therefore, binary logistic regression was identified as the best method to predict diabetes risk in the context of this study
KLASIFIKASI TINGKAT PENGANGGURAN TERBUKA DI PULAU JAWA MENGGUNAKAN REGRESI LOGISTIK ORDINAL Indah, Yunna Mentari; Fitrianto, Anwar; Erfiani, Erfiani; Indahwati, Indahwati; Aliu, Muftih Alwi
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 2 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i2.629

Abstract

Unemployment is one of the indicators for measuring the economic conditions of a region. It is also a social and economic problem in many countries, including Indonesia, especially in areas with a density of economic activity, such as Java Island. The purpose of this study was to classify and analyze the factors that affect the open unemployment rate in cities and regions on Java Island, which are categorized as low, medium, and high. The research method used in this study was ordinal logistic regression analysis. The data source comes from the BPS website in 2023 with four predictor variables: population size, labor force participation rate, average years of schooling, and gross regional domestic product at constant prices. The research results show that the variables population size and labor force participation rate had a significant effect on the open unemployment rate, while the variables average years of schooling and gross regional domestic product at constant prices did not have a significant effect on the open unemployment rate with the accuracy of the ordinal logistic model is 77.27%.
ANALISIS FAKTOR YANG MEMPENGARUHI INDEKS PEMBANGUNAN MANUSIA DI INDONESIA MENGGUNAKAN MODEL REGRESI LOGISTIK BINER Vitona, Desi; Erfiani, Erfiani; Indahwati, Indahwati; Fitrianto, Anwar; Aliu, Mufthi Alwi
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 2 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i2.634

Abstract

The primary tool for assessing the extent of human development progress in a country is the Human Development Index (HDI). There are three components of Indonesia's Human Development Index (HDI). The method used to characterize the quality of human existence is based on these foundational aspects of HDI. The three elements include the role of economic advancement in human progress, as well as health, knowledge, and a decent standard of living. The objective of this research is to conduct binary logistic regression modeling to identify the key aspects that influence the Human Development Index of Regencies and Cities in Indonesia. If the response variable is binary and the predictor factors consist of one or more continuous or categorical variables, binary logistic regression is the statistical technique used to model the categorical response variable. The research results indicate that the percentage of Life Expectancy (X1), Average Length of Schooling (X2), Expected Years of Schooling (X3), and Per Capita Expenditure (X4), both partially and simultaneously, are independent variables that have the most significant impact on HDI at a real level of α = 5%. A balanced accuracy rating of 91.83% was achieved from the model evaluation, indicating that the model is useful
MODEL KLASIFIKASI REGRESI LOGISTIK BINER UNTUK LAPORAN MASYARAKAT DI OMBUDSMAN REPUBLIK INDONESIA Daswati, Oktaviyani; Indahwati, Indahwati; Erfiani, Erfiani; Fitrianto, Anwar; Aliu, Muftih Alwi
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 2 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i2.702

Abstract

A classification model is needed to predict data into the right class according to the pattern of previous data. Binary Logistic Regression can be used in building classification models, even though the independent variables are categorical scale data. Through binary logistic regression, it can also be seen which category of independent variables influences the response variable. Public complaint reports at the Ombudsman of the Republic of Indonesia are classified into reports that found maladministration and not. The Binary Logistic Regression model with several categorical independent variables related to the public complaint reports data applied resulted in a classification model with an overall classification accuracy of 66.08% and a sensitivity of 75.31% in estimating the presence of maladministration findings in the submitted public complaint reports. Based on the 95% confidence level of the model, it is known that the factors that influence the occurrence of maladministration are the Group of Reportees, the Substance of the Report, the Method of Submission, the Request for Confidentiality, and the Location of the Inspection Office. This model can be used as a reference to reduce the incidence of maladministration cases in public service providers by focusing socialization and education on categories that have a real influence on each of these factors
PERBANDINGAN K-MEDOIDS DAN CLARA (Clustering Large Application) PADA DATA POPULASI TERNAK DI INDONESIA Ardhani, Rizky; Marshelle, Sean; Fitrianto, Anwar; Erfiani, Erfiani; Jumansyah, L. M. Risman Dwi
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 3 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i3.764

Abstract

This study compares the K-Medoids and CLARA (Clustering Large Application) methods for livestock population data in Indonesian districts and cities. Calculating the distance between points and objects in the data, K-Medoids is a method for clustering based on data points (medoids). A larger dataset is divided into several samples for comparison in CLARA, an extension of the K-Medoids approach. The CLARA method analysis results show that three clusters are the ideal number. The ideal number of clusters in a K-Medoids cluster analysis is two. The Silhouette Score (SS), Davis-Bouldin Index (DBI), and Calinski-Harabasz Index (CHI) are the metrics that are measured. The evaluation of the comparison results shows that the CLARA method has an SS value of 0.66, while K-Medoids has an SS value of 0.62. The comparison of the CLARA and K-Medoids approaches yielded DBI values of 1.38 and 1.92, respectively, and 197.54 and 132.73 for CHI. The findings indicate that, in comparison to the K-Medoids approach, the SS value for the CLARA method is closer to 1, and that the CHI value derived from the CLARA method is likewise greater. The K-Medoids approach has a higher DBI value than the CLARA method, where a lower DBI value denotes superior performance. The CLARA approach is the most effective way to do cluster analysis on livestock population data in Indonesian districts and cities, according to the findings.
PENERAPAN K-MODES DALAM KLASTERISASI KABUPATEN/KOTA DI JAWA BARAT BERDASARKAN INDIKATOR INFRASTRUKTUR Rahman, Abd.; Anadra, Rahmi; Fitrianto , Anwar; Erfiani, Erfiani; Dwi Jumansyah, L.M. Risman
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 3 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i3.787

Abstract

Clustering is a statistical method used to group data based on certain similar characteristics, particularly in the context of complex and diverse data. This study aims to cluster districts/cities in West Java Province based on infrastructure indicators, namely access to clean water, sanitation, electricity, and energy, using the K-Modes clustering method. The data used is categorical data sourced from SUSENAS West Java 2023. The cluster analysis resulted in four distinct clusters, each representing significant differences in infrastructure characteristics across regions. The first cluster consists of 8 regions, the second cluster includes 7 regions, the third cluster consists of 1 region, and the fourth cluster contains 11 regions. These characteristic differences among clusters indicate infrastructure disparities that need to be addressed in planning more equitable development to improve the quality of life of people in West Java
Co-Authors -, Salsabila A. A., Muftih Aam Alamudi Abd. Rahman Adeline Vinda Septiani Agung Tri Utomo Agus M Soleh Agus Mohamad Soleh Ahmad Syauqi Alfa Nugraha Alfa Nugraha Pradana Alfa Nugraha Pradana Alfa Nugraha Pradana Alfa Nugraha Pradana Alfi Indah Nurrizqi Alifviansyah, Kevin Aliu, Mufthi Alwi ALIU, MUFTIH ALWI Amalia Kholifatunnisa Amanda, Nabila Amatullah, Fida Fariha Amelia, Reni Amir Abduljabbar Dalimunthe Anadra, Rahmi Anang Kurnia Anang Kurnia Angelia, Riza Rahmah Anik Djuraidah Anisa Nurizki Annissa Nur Fitria Fathina Ardhani, Rizky Aristawidya, Rafika Askari, M. Aiman Asri Pratiwi, Asri Assyifa Lala Pratiwi Hamid Azis, Tukhfatur Rizmah Aziza, Vivin Nur Bagus Sartono Budi Susetyo Bukhari, Ari Shobri Cahya Alkahfi Choon, Lai Ming Daswati, Oktaviyani Defri Ramadhan Ismana Deri Siswara Dessy Rotua Natalina Siahaan Dessy Siahaan Devi Permata Sari Dian Handayani Dwi Jumansyah, L.M. Risman Erfiani Erfiani Erfiani Erfiani Erfiani Erfiani Fadilah, Anggita Rizky Fahira, Fani Farit M Affendi Farit M. Afendi Farit M. Afendi Farit Mochamad Afendi Fatimah Fatimah Fauziah, Monica Rahma Fulazzaky, Tahira Ghina Fauziah Gustiara, Dela Hari Wijayanto Harismahyanti A., Andi Hasnataeni, Yunia Hasnita Hasnita Heri Cahyono I Made Sumertajaya Ilham Azagi Ilmani, Erdanisa Aghnia Imam Hanafi Indah, Yunna Mentari Indahwati Indahwati Indahwati Indahwati, Indahwati Irsyifa Mayzela Afnan Irzaman, Irzaman Ismah, Ismah Isna Shofia Mubarokah Iswan Achlan Setiawan Iswati Ita Wulandari Jamaluddin Rabbani Harahap Jap Ee Jia Jia, Jap Ee Jumansyah, L. M. Risman Dwi Jumansyah, L.M. Risman Dwi Kapiluka, Kristuisno Martsuyanto Khairil Anwar Notodiputro Khikmah, Khusnia Nurul Khusnia N. K. Khusnia Nurul Khikmah Kriswan, Suliana Kusman Sadik L.M. Risman Dwi Jumansyah La Ode Abdul Rahman La Ode Abdul Rahman Linganathan, Punitha lmam Hanafi M. Aiman Askari M.S, Erfiani Manaf, Silmi Annisa Rizki Marshelle, Sean Megawati Megawati Muftih Alwi Aliu Muftih Alwi Aliu Muhadi, Rizqi Annafi Muhammad Irfan Hanifiandi Kurnia Muhammad Yusran mutiah, siti Nabila Ghoni Trisno Hidayatulloh Nadira Nisa Alwani Nashir, Husnun Nisa Nur Aisyah Novi Hidayat Pusponegoro Nugraha, Adhiyatma Nur Hidayah Nur Khamidah NURADILLA, SITI Nurizki, Anisa Pangestika, Dhita Elsha Pika Silvianti Pradnya Sri Rahayu Pratiwi, Nafisa Berliana Indah Punitha Linganathan Putri Auliana Rifqi Mukhlashin Putri, Mega Ramatika Putri, Oktaviani Aisyah Rafika Aufa Hasibuan Rahmatun Nisa, Rahmatun Rais Ramadhan, Syaifullah Yusuf Reka Agustia Astari Reni Amelia Reni Amelia Retna Nurwulan Riansyah, Boy Rifda Nida’ul Labibah Riska Yulianti, Riska Rizki Manaf, Silmi Anisa Rizki, Akbar Rizqi, Tasya Anisah Sachnaz Desta Oktarin salsa bila Sari, Jefita Resti Seta Baehera Setyowati, Silfiana Lis Siau Hui Mah Siau Man Mah Silmi Annisa Rizki Manaf Siregar, Indra Rivaldi Siti Hafsah Siti Hasanah Siti Nur Azizah, Siti Nur Sofia Octaviana Sony Hartono Wijaya Suantari, Ni Gusti Ayu Putu Puteri Suliana Kriswan Tangke, Nabillah Rahmatiah Titin Agustina Titin Yuniarty Yuniarty Uswatun Hasanah Utami Dyah Syafitri Utami, Annisa Putri Vitona, Desi Vivin Nur Aziza Waliulu, Megawati Zein Wan Muhamad, Wan Zuki Azman Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Wan Zuki Azman Wan Muhamad Waode, Yully Sofyah Winata, Hilma Mutiara Xin, Sim Hui Yenni Angraini Yudhianto, Rachmat Bintang Yuniarsyih R.A, Rizqi Dwi Yusuf, Fajar Athallah Zaenal, Mohamad Solehudin Zahid, Muhammad Farhan Zahra, Latifah Zein Rizky Santoso