This Author published in this journals
All Journal Jurnal Buana Informatika JSI: Jurnal Sistem Informasi (E-Journal) Jurnal Edukasi dan Penelitian Informatika (JEPIN) Annual Research Seminar CESS (Journal of Computer Engineering, System and Science) Jurnal Ilmiah KOMPUTASI Sistemasi: Jurnal Sistem Informasi Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JTT (Jurnal Teknologi Terpadu) Jurnal Manajemen STIE Muhammadiyah Palopo MBR (Management and Business Review) JOURNAL OF APPLIED INFORMATICS AND COMPUTING Digital Zone: Jurnal Teknologi Informasi dan Komunikasi The IJICS (International Journal of Informatics and Computer Science) JURIKOM (Jurnal Riset Komputer) JURTEKSI JOISIE (Journal Of Information Systems And Informatics Engineering) INFOMATEK: Jurnal Informatika, Manajemen dan Teknologi Building of Informatics, Technology and Science Zonasi: Jurnal Sistem Informasi JATI (Jurnal Mahasiswa Teknik Informatika) JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Jurnal Darma Agung Jurnal Bisnis, Manajemen, dan Ekonomi Jurnal Generic Jurnal Pendidikan dan Teknologi Indonesia Jurnal Algoritma Jurnal Teknologi dan Manajemen Industri Terapan Jurnal Indonesia Sosial Teknologi The Indonesian Journal of Computer Science Management Analysis Journal Scientific Journal of Informatics Journal of Mathematics, Computation and Statistics (JMATHCOS) Buffer Informatika Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics JuTISI (Jurnal Teknik Informatika dan Sistem Informasi)
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : JOURNAL OF APPLIED INFORMATICS AND COMPUTING

Knowledge Discovery Melalui Pemodelan Topik pada Ulasan Pengguna Aplikasi GoPartner Menggunakan BERTopic, LDA, dan NMF Pratiwi, Metti Detricia; Tania, Ken Ditha
Journal of Applied Informatics and Computing Vol. 9 No. 1 (2025): February 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i1.8782

Abstract

Transportation and food delivery services are one of the driving sectors of the digital economy in Indonesia. The e-Conomy SEA 2023 report shows that the transportation and food delivery services sector experienced a decrease in GMV in 2023 by 8% from the previous year. The decline in GMV indicates a decrease in transaction value in the transportation and food delivery service sector. GoPartner is an application developed by GoTo to assist driver partners in carrying out various services in the gojek application which is one of the applications engaged in the transportation sector and food delivery services. Drivers as people who provide services directly to consumers are certainly one of the factors that influence customer behavior in using services. To find out the problems faced by drivers, this research conducts knowledge discovery through topic modeling on GoPartner application reviews using BERTopic, LDA, and NMF, each of these methods has a different approach. Based on the research results and the quality of the topics generated, BERTopic and LDA have better quality in analyzing GoPartner user reviews.
Sentiment-Based Knowledge Discovery pada Aplikasi iPusnas Menggunakan Metode Machine Learning dan Deep Learning Ayuningtiyas, Pratiwi; Tania, Ken Ditha; Sari, Winda Kurnia
Journal of Applied Informatics and Computing Vol. 9 No. 5 (2025): October 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i5.10258

Abstract

iPusnas is a digital library application developed by the National Library of the Republic of Indonesia since 2016, with over 1.5 million users. Despite its potential to improve literacy, the application has only received a rating of 2.0. This study conducted sentiment analysis on 7.596 reviews obatained through web scraping using the Google Play Scraper Library. The data then underwent preprocessing steps including case folding, data cleaning, tokenization, stopword removal, and stemming. Reviews were automatically labeled based on the rating score, where scores of 1-3 were categorized as negative, with 5.174 entries, and scores 4-5 as positive, with 2.422 entries. The dataset was split in an 80:20 ratio, with 80% for training, and 20% for testing. The machine learning models tested were SVM, Random Forest, CNN, LSTM, and RNN. The evaluation metrics included accuracy, precision, recall, F1-score, and confusion matrix. CNN and LSTM achieved the highest accuracy (82%), Random Forest and CNN achieved the highest precision (81%), RNN the highest recall (79%) and LSTM the highest F1-score (79%). McNemar test showed a significant difference between Random Forest and CNN, Random Forest and LSTM, and between RNN and LSTM, while CNN and LSTM, as well as CNN and RNN, showed no significant difference.
Sentiment-Based Knowledge Discovery of Wondr by BNI App Reviews Using SVM, KNN, and Naive Bayes for CRM Enhancement Tri Zafira, Zahra; Ditha Tania, Ken; Kurnia Sari, Winda
Journal of Applied Informatics and Computing Vol. 9 No. 5 (2025): October 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i5.10323

Abstract

The rapid development of digital banking services has necessitated a deeper understanding of user perceptions and satisfaction levels. This study analyzes sentiment from user reviews of the Wondr by BNI app using a Knowledge Discovery approach and machine learning methods. Three classification algorithms were compared: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naive Bayes, evaluated with accuracy, precision, recall, and f1-score. The results show that SVM and Naive Bayes achieved the best performance with F1-scores of 0.88 and 0.87, while KNN lagged behind with 0.77. An ANOVA test further confirmed that the performance differences were statistically significant (p < 0.05), with SVM and Naive Bayes consistently outperforming KNN. Word Cloud analysis revealed dominant positive terms such as "easy," "fast," and "transaction," alongside negative terms like "login," "difficult," and "verification." These findings highlight user appreciation for simplicity and speed, while pointing out functional issues that require attention. This research not only enriches the literature on Indonesian-language sentiment analysis in the financial sector but also provides practical insights for Customer Relationship Management (CRM), particularly in strengthening customer retention strategies and guiding UX redesign for digital banking services.
Knowledge Discovery on E-Commerce Customer Churn Using Interpretable Machine Learning: A Comparative Study of SHAP-Based Classifiers Amanda Ardhani, Dhita; Tania, Ken Ditha
Journal of Applied Informatics and Computing Vol. 9 No. 5 (2025): October 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i5.10811

Abstract

Customer churn remains one of the most pressing issues in the e-commerce sector, as it directly erodes revenue and reduces customer lifetime value. This study proposes an interpretable machine learning approach designed not only to predict churn but also to uncover practical insights that can inform retention strategies. The analysis draws on a publicly available dataset containing customer behavior and transaction records. Data preparation involved handling missing values, applying label encoding, and addressing class imbalance with SMOTE. Five classification models—Logistic Regression, Random Forest, XGBoost, Support Vector Machine, and Gradient Boosting—were trained on an 80:20 stratified split, with performance assessed through accuracy, precision, recall, F1-score, and AUC. Among these, XGBoost delivered the most consistent results, achieving 96% accuracy, 95% precision, 92% recall, and a near-perfect AUC of 0.999, followed closely by Random Forest. Logistic Regression produced the lowest AUC at 0.886. To ensure transparency in decision-making, SHAP (SHapley Additive exPlanations) was applied, revealing Tenure, Complain, and CashbackAmount as the most influential predictors. Longer customer relationships were linked to reduced churn risk, while frequent complaints and higher cashback usage indicated a greater likelihood of leaving. These findings contribute knowledge by blending robust predictive performance with interpretability, enabling e-commerce businesses to design more targeted and proactive customer retention measures.
Sentiment Analysis on Google Play Store Reviews to Measure User Perception of the Gojek Application Using CNN Anissa, Cahya Rahmi; Tania, Ken Ditha; Sari, Winda Kurnia
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11084

Abstract

This study was conducted to analyze sentiment towards user reviews from the Google Play Store regarding the Gojek application. The analysis aims to measure user perceptions using a Convolutional Neural Network (CNN). This study aims to understand user views on the Gojek application. By understanding user perceptions, the information obtained can be utilized by the company's service team to improve the quality of the application for users. User perceptions are grouped into three labels: positive, neutral, and negative. To produce an effective model, this study uses three data sharing ratios simultaneously with the same parameters: 90:10, 80:20, and 70:30. Due to the large amount of data, random sampling is needed to balance the data and thus increase accuracy in the data processing process. Model evaluation was carried out using a confusion matrix, precision, recall, and F1-Score. The results obtained with the highest accuracy of 84.29%. This study successfully demonstrates that CNN is able to process user review data well.
Co-Authors Abdillah Putra, Muhafsyah Adeliani, Adeliani Adriansyah, Rizki Afdhal Nadzif, Muhammad Ahmad Rifai Ahmad Rifai Akbar Adiprama, Faris Akbar Kurniawan, Iqbal Akbar, Rifko Akhda, M. Dandi Al Fachrozi, Muhammad Al-Farisy, M Hadi Albukhori, M Rafli Alfarizi Ramadhiyansa, Muhammad Alfarizi, M. Ali Ibrahim Ali Ibrahim (SCOPUS ID: 57203129436) Allsela Meiriza, Allsela Alvines, Mahendi Alzena Aisha Shakira Amanda Ardhani, Dhita Amelia Amelia Amelia Putri, Shinta Amelia, Rita Anadia, Qothrunnada Wafi Ananda Khoirunnisa Andini Bahri, Cheisya Anggun Ramadina Anindya Putri, Salsa Anisa Basulina, Nur Anissa, Cahya Rahmi Apriansyah Putra Apriansyah Putra Aqil Zidane, Muhammad Aqilah Syahputra, M Fathan Archi Daffa Danendra, Muhammad Ardhillah, Onky Ari Wedhasmara Ariyani, Ishlah Putri Ariyanti, Putri Arvhi Randita Setia Athallah Ubaid, Deni Attika Putri, Shopi Audia Faradhisa Ansori Aulia, Cantika Ayuningtiyas, Pratiwi Azmi Zaky, Muhammad Azra, Muhammad Azyumardi Bahri, Cheisya Andini Baidhawi, Alif Bimmo Fathin Tammam Cahya Aulia, Syifa Cahya Rahmi Anissa Cici Elna Sari Citra, Belia Clark Peter Wijaya, Adley Constancio, Elven Dedy Kurniawan Dian Febriansyah Dwiansyah, Octa Dzaky Agusman, Muhammad Eka Saputra Eka Sevtiyuni, Putri Elna Sari, Cici Endang Lestari Ruskan Epriyanti, Nadia Fahmi Aulia Hakim, Adzka Fajaria, Mutiara Fathoni - Fatihaturrahmah, Aisyah Fatimah, Aisyah Fauzan, Muhammad Fairuz Fikri, M Fauzan Gustiani, Sindy Haidar Afif Mufid, Muhammad Hanggara, Bryan Hendrawan, Deni Agus Hermanto, Muhammad Lucky Hikmahwarani, Fellycia Ichsan Farel Rachmad, Muhammad Ikhwan Najatafani, Bintang Inayah, Anna Fadilla Indira Nailah Ramadhani Ispahan, Tarisha Izzan Fieldi, Muhammad Jodi Pratama, Muhammad Jonathan Pakpahan Karima, Dzakiah Aulia Karimsyah Lubis, Muhammad Khoiriyah Harahap, Dayana Kurnia Sari, Winda Lailatur Rahmi Lakeisyah, Eka Therina Lifiano Jamot Munthe, Gabriel Lubis, Muhammad Ali M Ihsan Jambak M Luthfi Khailani, Kgs Mahdiyah Afifah Sari Mahdiyah Afifah Sari Maretta, Aulia Pinkan Mariska, Inneke Via Marshella, Siti Hariza Mas Ud, Khalid Al Maulana, Rahmat Maulizidan, Muammar Ramadhani Meiriza, Allsella Miftahul Falah Mira Afrina Mufidah, Luthfiah Muhammad Adisatya Dwipansy Muhammad Dzaky Alifayoezra Muhammad Idris Muhammad Luthfi Al-Ghifari Muhammad Luthfi Al-Ghifari Munaspin, Zahra Diva Putri Nabilatulrahmah, Raihana Nachwa, Syakillah Nadrota Acta, Muhammad Fakhri Najibah Putri, Aulia Najwa Widasari, Yesya Naretha Kawadha Pasemah Gumay Nashiroh Ramadhani, Muthia Naufaldihanif, Rihan Novrizal Eka Saputra Nugraha, Allan Nuraini Kusuma, Aisha Onkky Alexander Pacu Putra Prasetia, Dika Pratiwi, Metti Detricia Purba, Kevin Agustin Putri Ariyanti Putri Casanova, Musdalifa Putri Mutiara Arinie Putri Silpiara Putri, Amelia Rizki Putri, Aulia Najibah Putri, Naila Raihana Putri, Salsa Anindya Putri, Shelly Raditya Dafa Rizki Rafika Octaria Ningsih Rafli Maulana, Muhammad Rahmah, Atika Nur Rahman, M. Fadhil Rahmat Izwan Heroza Ramadhan Putra Pratama, Muhammad Ramadhani, Indira Nailah Rangga Aderiyana, Fakih Ravi Wijayanto, Muhammad Riansyah, Muhammad Bintang Naufal Risyahputri, Aliyananda Rizka Mumtaz, Fadia Rizki Ade Ningsih Rizky Herdiansyah, Muhammad Rizkyllah, Anabel Fiorenza Robani, M Tsabita Rositiani, Ely Sabar Manahan, Nico Sabila, Amalia Sahira, Mutia Salsabila, Adella Salsabila, Shofi Sanjaya, Riska Amelia Saputra, Marco Sasmita, Ruth Mei Septhia Charenda Putri Sevtiyuni, Putri Eka Siade, Shalya Yunia Siregar, Richi Nauli Juniarto Suci Amalia Suci Fitriani, Suci Syarief Albani, Muhammad Theresia Pardede, Eva Theressa Hasioani Sianturi, Claudia Tika Octri Dieni Titiana, Nuke Merisca Tri Zafira, Zahra Triana, Ayu Triputra, Muhamad Meiko Tsabitah, Laila Wahyuni Cahnia Sari Wilantara, M Pandu Winda Kurnia Sari Wirnanti, Rintan Wulan Dari, Atikah Yasir Alghifari, Muhammad Yasyfi Imran, Athallah Zahran Afif, Muhammad Zidan, Umar Rahman