Claim Missing Document
Check
Articles

Prediksi Nilai Pasar Pemain Sepak Bola Menggunakan Algoritma Random Forest Berdasarkan Atribut Permainan Dari Game Football Manager 2023 Pada Lima Liga Top Eropa (Berdasarkan Koefisien UEFA) Affandi, Syihabuddin; Maryanto, Eddy; Kurniawan, Yogiek Indra
Jurnal Pendidikan dan Teknologi Indonesia Vol 4 No 10 (2024): JPTI - Oktober 2024
Publisher : CV Infinite Corporation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jpti.672

Abstract

Sepak bola bukan hanya sekadar olahraga, tetapi juga industri bernilai miliaran dolar, khususnya di Eropa. Salah satu aspek krusial dalam industri ini adalah penentuan nilai pasar pemain, yang menjadi dasar bagi transaksi transfer pemain. Nilai pasar pemain dipengaruhi oleh berbagai faktor, seperti performa, usia, posisi, serta aspek fisik dan mental. Namun, terdapat kesenjangan dalam penilaian nilai pasar, di mana pemain dengan statistik performa tinggi terkadang memiliki nilai pasar yang lebih rendah dibandingkan pemain dengan performa yang kurang optimal. Oleh karena itu, prediksi nilai pasar pemain secara objektif menjadi tantangan penting bagi klub sepak bola dalam pengambilan keputusan strategis. Penelitian ini mengusulkan model prediksi berbasis Random Forest untuk mengestimasi nilai pasar pemain secara objektif dengan memanfaatkan data atribut permainan dari Football Manager 2023. Dataset mencakup 1.405 pemain dari lima liga top Eropa (berdasarkan koefisien UEFA 2023) dengan 66 variabel. Metodologi penelitian meliputi tahap preprocessing data (handling missing values,label encoding), Exploratory Data Analysis (EDA), pembangunan model Random Forest, dan implementasi sistem berbasis web. Pembagian data menggunakan rasio 80:20 (training-testing), sementara evaluasi kinerja model dilakukan melalui metrik RMSE (Root Mean Squared Error), MAE (Mean Absolute Error), dan R² (Koefisien Determinasi). Hasil eksperimen menunjukkan bahwa model baseline dengan parameter default memperoleh nilai Root Mean Squared Error (RMSE) sebesar 0.63, Mean Absolute Error (MAE) sebesar 0.517, dan koefisien determinasi (R²) sebesar 0.75. Setelah dilakukan optimasi hyperparameter menggunakan Grid Search, kinerja model mengalami peningkatan yang signifikan dengan RMSE sebesar 0.62, MAE sebesar 0.513, dan R² sebesar 0.76. Model optimal diimplementasikan ke dalam sebuah situs web untuk mempermudah melakukan prediksi nilai pasar pemain. Hasil penelitian menunjukkan bahwa model Random Forest Regression mampu memberikan prediksi nilai pasar dengan tingkat akurasi yang lebih baik dibandingkan metode lain yang telah diuji dalam penelitian terdahulu.
Analisis Sentimen Kemungkinan Depresi dan Kecemasan pada Twitter Menggunakan Support Vector Machine Darmawan, Ferry; Joe, Michael; Kurniawan, Yogiek Indra; Afuan, Lasmedi
Eksplora Informatika Vol 13 No 1 (2023): Jurnal Eksplora Informatika
Publisher : Institut Teknologi dan Bisnis STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30864/eksplora.v13i1.854

Abstract

THALASSEMIA MINOR SCREENING APPLICATION USING THE C4.5 METHOD BASED ON LARAVEL Sohputro, Nicolas; Wijayanto, Bangun; Kurniawan, Yogiek Indra
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 2 (2024): JUTIF Volume 5, Number 2, April 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.2.1672

Abstract

Thalassemia is an inherited blood disorder that causes anaemia and weak red blood cells. Thalassemia minor is a type of thalassemia where the patient is a carrier of thalassemia and only experiences mild anaemia. To prevent an increase in the number of thalassemia cases, a screening process is held for an individual to confirm whether there is a thalassemia carrier in the body. In providing screening in Banyumas Regency, the Unsoed Medical Faculty Thalassemia Research Team encountered several problems, namely that the screening results could only show whether an individual was a carrier of thalassemia minor or not. This causes a problem because a good screening result is a probability. The second problem is the absence of an integrated information system for thalassemia control in Banyumas Regency. The solution to these two problems is to build a thalassemia minor screening application. The application uses the C4.5 data mining method to calculate the likelihood of thalassemia minor in individuals. The application is made website-based using Laravel to speed up website development. The system also uses a web service to be able to access the created C4.5 algorithm.
WEB-BASED IMAGE CAPTIONING FOR IMAGES OF TOURIST ATTRACTIONS IN PURBALINGGA USING TRANSFORMER ARCHITECTURE AND TEXT-TO-SPEECH Muazam, Safa; Kurniawan, Yogiek Indra; Iskandar, Dadang
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 5 (2024): JUTIF Volume 5, Number 5, Oktober 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.5.2585

Abstract

Purbalingga is a region located in Central Java Province, offering interesting natural beauty and tourist destinations. Many tourists capture their moments in photos, which are then uploaded to social media. However, a picture can contain a lot of information, and each individual may interpret it differently. Without captions, people may struggle to extract this information. Image captioning addresses this challenge by automatically generating text descriptions for images. Additionally, text-to-speech is used to enhance accessibility for the visually impaired in understanding image descriptions. This research aims to develop an image captioning model for images of tourist attractions in Purbalingga using transformer architecture and ResNet50. The transformer architecture employs an attention mechanism to learn the context and relationships between inputs and outputs, while ResNet50 is a robust convolutional network for image feature extraction. Model evaluation using BLEU metrics, which compare generated sentences to reference sentences, shows the best results as BLEU-{1, 2, 3, 4} = {0.672, 0.559, 0.489, 0.437}. Experiments indicate that increasing embeddings and layers extends training time and lowers BLEU scores, while changing the number of heads has minimal impact on results. The best model is implemented in a web-based application using the SDLC waterfall method, Flask framework, and MySQL database. This application allows users to upload tourist attraction images, receive automatic descriptions in Indonesian, and listen to the captions read aloud using the Web Speech API-based text-to-speech feature. Blackbox testing results show valid outcomes for all tests, indicating that the application operates as required and is suitable for use.
Interest Patterns Measurement Application for Vocational High School Students Kumaidi, K; Kurniawan, Yogiek Indra; Farida, Rahayu
Proceeding ISETH (International Summit on Science, Technology, and Humanity) 2017: Proceeding ISETH (International Conference on Science, Technology, and Humanity)
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/iseth.2322

Abstract

Interest patterns are the characteristic of a student's interest in which the student wishes to engage in a particular field. The pattern of interest of students in vocational high school in Indonesia should be known to obtain an appropriate career based on the student's interest. To reveal the pattern of interest, an instrument based on the Holland theory has been developed in Indonesia. Nevertheless, the test is performed manually using pencil and paper thus there are some ineffectiveness during the implementation. Moreover, it requires longer time for data processing and is susceptible to error. Therefore, a computer-based application that can measure the interest patterns is built. With the existence of this computer-based application, data processing can be done quickly and accurately without any errors and can be accessed anywhere and anytime. This research found that the use of the application can support the effectiveness and efficiency of the test in recognizing the interest pattern of a student.
Decision Support System for Acceptance Scholarship with Simple Additive Weighting Method Kurniawan, Yogiek Indra
Proceeding ISETH (International Summit on Science, Technology, and Humanity) 2015: Proceeding ISETH (International Conference on Science, Technology, and Humanity)
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/iseth.2370

Abstract

A large number of scholarships have been extensively distributed in the educational institutions including college and university. It is, however, vulnerable to subjectivity. In general, students applying for the scholarship will be selected by the committee that may be subjective in the assessment process. In consequence, it can affect the result of scholarship recipients. Decision Support System (DSS) is a computer-based information system that supports the decision activities to be more. One method of the application of decision support systems is Simple Additive Weighting (SAW). This study was exploring the application of SAW in the case study of scholarship recipient selection process by weighting some predetermined criteria.
Co-Authors Abdul Kemal Nasa’i Wibowo ABIDIN, ANIDA ZULAIFA Aditama, Maulana Rizki Affandi, Syihabuddin Aflit Nuryulia Ahmad Mardalis, Ahmad Aini Hanifa Ajib Rosyadi Aldi Farhan Razak Alfarizi, Rizki Zakaria Andika Putra Pratama Andika Rustam Andri Lukman Nurjaman Anin Ammbya Soulani Aniq Hudiyah Bil Haq, Aniq Hudiyah Bil Anisah Tri Setyowinarti Annas, Rifai Annastalia Fatikasari Antaristi, Monika Arfandi Ahmad Arief Kelik Nugroho Arkham Zahri Rakhman Avifah Hasna Nur Fadila Ayu Putri Wardhani Aziz Abdul Rahman Aziz Prasuci Priambadha Bagas Ario Dewanto Bangun Wijayanto Bangun Wijayanto Bangun Wijayanto Bangun Wijayanto Budi Santoso Chrismawan, Stephen Prasetya Dadang Iskandar Dadang Iskandar, Dadang Daffa Ammar Muaafii Daffa Naufaldi Al Rasyid Dedi Gunawan Deny Febriyanto Desy Puspitassari Dhenok Prastyaningtyas Paramesvari Diky Alfian Kurniawan Diva Kurnia Achmadi Dzulfikar, Muhammad Zaki Eddy Maryanto Eddy Maryanto Eddy Maryanto Efrina Fitriani Fakhrur Razi Farida Angguntina Farida, Rahayu Faris Akbar Abimanyu Fatah Yasin Al Irsyadi Febri Sutmo Febri Sutomo Ferry Darmawan Ihsan Puntadewa Indahsari, Desy Kartika Indra Permana Jati Indraswari, Naisha Rahma Ipung Permadi Ipung Permadi Irfan Agus Tiawan Ivan Darmawan Jati Hiliamsyah Husen Joe, Michael Kumaidi, K Kusuma, Agung Fajar Surya Laksono, FX Anjar Tri Lasmedi Afuan Lena Rosmayani Lia Dewi Susanti Mahendra, Galuh Raka Majid Narendra Maria Ulfa Chasanah Marpid, Nuravifah Novembriana Meilisa Ayu Susantiva Mochammad Muslih Maruzi Mohamad Waluyo Monika Herliana Muazam, Safa Muhamad Taufik Hidayat MUHAMMAD ABDUL GHOFAR Muhammad Adam Mulyadi Mucoffa Muhammad Bahrul Ashfiya Muhammad Fikri Rivaldi Muhammad Hikal Muhammad Luthfi Muhammad Luthfi Hidayat Muhammad Naufal Faza Muhammad Thoriq Aziz Muhammad Zein Albalki Naisha Rahma Indraswari Nofiyati Nofiyati Nofiyati Nofiyati Nofiyati Nofiyati, Nofiyati Nofiyati, Nofiyati Novanto, Adi Nur Chasanah Nur Chasanah Octaviano, Atha Narentha Priandika Ratmadani Anugrah Puput Muliana Putri Rahayu, Swahesti Puspita Rahman, Ahmada Auliya Ramadhan, Muhammad Rivai Putra Ramadhani, Faza Abdillah Riski Agung Putro Laksono Rochmat Mulyo Sugihono Setyowinarti, Anisah Tri Singgih Rama Pradana Sohputro, Nicolas Sri Murwanti Sugih Ahmad Fauzan Sunan, Huzaely Latief Susi Setianingsih Swahesti Puspita Rahayu Teguh Cahyono Tiyssa Indah Barokah Uki Hares Yulianti Widhiatmoko Herry Purnomo Widiyarti Endang Saputri Windiasani, Pungki Arina Yulianita, Nadia Gitya