Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Jurnal Simetris

PREDIKSI VOLUME LALU LINTAS ANGKUTAN LEBARAN PADA WILAYAH JAWA TENGAH DENGAN METODE K-MEANS CLUSTERING UNTUK ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) Evanita, Evanita; Noersasongko, Edi; Pramunendar, Ricardus Anggi
Jurnal Simetris Vol 7, No 1 (2016): JURNAL SIMETRIS VOLUME 7 NO 1 TAHUN 2016
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (450.085 KB)

Abstract

Di Indonesia kepadatan arus lalu lintas terjadi pada jam berangkat dan pulang kantor, hari-hari libur panjang atau hari-hari besar nasional terutama saat hari raya Idul Fitri (lebaran). Mudik sudah menjadi tradisi bagi masyarakat Indonesia yang ditunggu-tunggu menjelang lebaran, berbondong-bondong untuk pulang ke kampung halaman untuk bertemu dan berkumpul dengan keluarga. Kegiatan rutin tahunan ini banyak di lakukan khususnya bagi masyarakat kota-kota besar seperti Jakarta, dimana diketahui bahwa Jakarta adalah Ibu kota negara Republik Indonesia dan menjadi tujuan merantau untuk mencari pekerjaan yang lebih layak yang merupakan harapan besar bagi masyarakat desa. Volume kendaraan bertambah sejak 7 hari menjelang lebaran sampai 7 hari setelah lebaran tiap tahunnya terutama pada arah keluar dan masuk wilayah Jawa Tengah yang banyak menjadi tujuan mudik. Volume kendaraan saat arus mudik yang selalu meningkat inilah yang akan diteliti lebih lanjut dengan metode ANFIS agar dapat menjadi alternatif solusi  langkah  apa  yang  akan  dilakukan di  tahun  selanjutnya agar  pelayanan lalu  lintas, kemacetan panjang dan angka kecelakaan berkurang. Dengan input parameter ANFIS yang digunakan yaitu pengclusteran hingga 5 cluster, epoch 100, error goal 0 diperoleh performa terbaik ANFIS dengan K-Means clustering yang terbagi menjadi 3 cluster, epoch terbaik sebesar 20 dengan RMSE Training terbaik sebesar  0,1198,  RMSE  Testing terbaik sebesar  0,0282  dan  waktu proses tersingkat  sebesar 0,0695.Selanjutnya hasil prediksi diharapkan dapat bermanfaat menjadi alternatif solusi langkah apa yang akan dilakukan di tahun selanjutnya agar pelayanan lalu lintas lebih baik lagi.Kata kunci: angkutan lebaran, Jawa Tengah, ANFIS.
PREDIKSI VOLUME LALU LINTAS ANGKUTAN LEBARAN PADA WILAYAH JAWA TENGAH DENGAN METODE K-MEANS CLUSTERING UNTUK ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS) Evanita Evanita; Edi Noersasongko; Ricardus Anggi Pramunendar
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 7, No 1 (2016): JURNAL SIMETRIS VOLUME 7 NO 1 TAHUN 2016
Publisher : Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (450.085 KB) | DOI: 10.24176/simet.v7i1.505

Abstract

Di Indonesia kepadatan arus lalu lintas terjadi pada jam berangkat dan pulang kantor, hari-hari libur panjang atau hari-hari besar nasional terutama saat hari raya Idul Fitri (lebaran). Mudik sudah menjadi tradisi bagi masyarakat Indonesia yang ditunggu-tunggu menjelang lebaran, berbondong-bondong untuk pulang ke kampung halaman untuk bertemu dan berkumpul dengan keluarga. Kegiatan rutin tahunan ini banyak di lakukan khususnya bagi masyarakat kota-kota besar seperti Jakarta, dimana diketahui bahwa Jakarta adalah Ibu kota negara Republik Indonesia dan menjadi tujuan merantau untuk mencari pekerjaan yang lebih layak yang merupakan harapan besar bagi masyarakat desa. Volume kendaraan bertambah sejak 7 hari menjelang lebaran sampai 7 hari setelah lebaran tiap tahunnya terutama pada arah keluar dan masuk wilayah Jawa Tengah yang banyak menjadi tujuan mudik. Volume kendaraan saat arus mudik yang selalu meningkat inilah yang akan diteliti lebih lanjut dengan metode ANFIS agar dapat menjadi alternatif solusi langkah apa yang akan dilakukan di tahun selanjutnya agar pelayanan lalu lintas, kemacetan panjang dan angka kecelakaan berkurang. Dengan input parameter ANFIS yang digunakan yaitu pengclusteran hingga 5 cluster, epoch 100, error goal 0 diperoleh performa terbaik ANFIS dengan K-Means clustering yang terbagi menjadi 3 cluster, epoch terbaik sebesar 20 dengan RMSE Training terbaik sebesar 0,1198, RMSE Testing terbaik sebesar 0,0282 dan waktu proses tersingkat sebesar 0,0695.Selanjutnya hasil prediksi diharapkan dapat bermanfaat menjadi alternatif solusi langkah apa yang akan dilakukan di tahun selanjutnya agar pelayanan lalu lintas lebih baik lagi.Kata kunci: angkutan lebaran, Jawa Tengah, ANFIS.
Peningkatan Deteksi Posisi Wajah Manusia dengan Metode Normal PDF berbasis Algoritma Viola-Jones Pramunendar, Ricardus Anggi; Megantara, Rama Aria; Alzami, Farrikh; Prabowo, Dwi Puji; Pergiwati, Dewi; Sinaga, Daurat
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 15, No 1 (2024): JURNAL SIMETRIS VOLUME 15 NO 1 TAHUN 2024
Publisher : Fakultas Teknik Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/simet.v15i1.10617

Abstract

Deteksi kulit manusia dalam pengolahan citra memiliki peran penting dalam aplikasi seperti analisis gerakan, pencarian citra berbasis konten, interaksi manusia komputer, dan analisis pelacakan gerakan manusia. Meskipun banyak penelitian telah dilakukan, masih ada kendala dalam menghadapi variasi warna kulit manusia yang kompleks. Dalam penelitian ini, diusulkan peningkatan kinerja deteksi kulit manusia dengan memanfaatkan algoritma deteksi wajah Viola-Jones untuk menentukan posisi wajah dalam citra. Selain itu, diterapkan juga teknik pemisahan region kasar dan halus pada wajah guna meningkatkan hasil deteksi kulit manusia. Penggunaan Normal PDF digunakan untuk mencari probabilitas piksel kulit dalam citra. Metode yang diusulkan berhasil mencapai tingkat akurasi tinggi, di mana sebagian besar citra uji memiliki akurasi di atas 90%. Meskipun terdapat beberapa citra yang memiliki akurasi lebih rendah dibandingkan metode sebelumnya, secara keseluruhan metode yang diusulkan mampu meningkatkan kinerja deteksi kulit manusia. Oleh karena itu, penelitian ini memberikan kontribusi berharga dalam pengembangan metode deteksi kulit manusia yang lebih baik.
Analisis Tekstur Fraktal untuk Pengenalan Motif Batik dengan Metode SVM-RBF Tamrin, Teguh; Pramunendar, Ricardus Anggi; Wibowo, Gentur Wahyu Nyipto; Haydar, Muhammad Rifqi Fajrul; Nugroho, Muhammad Bayu
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 15, No 2 (2024): JURNAL SIMETRIS VOLUME 15 NO 2 TAHUN 2024
Publisher : Fakultas Teknik Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/simet.v15i2.11175

Abstract

This research discusses the recognition and classification of batik motifs using the Fractal Texture Analysis-based Segmentation (SFTA) method integrated with Support Vector Machine (SVM). Batik, as an Indonesian cultural heritage, is the art of painting silk cloth with various motifs and patterns that reflect cultural values. To address the challenge of recognizing diverse batik motifs, this study proposes a fractal-based approach for extracting features from batik images. This method measures the fractal dimension of the image using the Box Counting Method, allowing it to depict unstructured organic textures with high precision. The extracted fractal features are then processed using various feature selection methods such as Chi-Square, Mutual Information, Variance Threshold, and others. Experimental results show that the "Dispersion Ratio" feature selection method achieves the highest accuracy of approximately 69.93% with SVM-RBF parameters (C=80), demonstrating its ability to identify relevant features for batik motif recognition. These findings make a significant. 
Pemanfaatan Metode CNN Menggunakan Arsitektur Alexnet untuk Peningkatan Kinerja Klasifikasi Penyakit Daun Tomat Prabowo, Dwi Puji; Bastian, Henry; Muqoddas, Ali; Pramunendar, Ricardus Anggi; Agustina, Feri
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol 15, No 2 (2024): JURNAL SIMETRIS VOLUME 15 NO 2 TAHUN 2024
Publisher : Fakultas Teknik Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/simet.v15i2.12529

Abstract

Tomat adalah salah satu komoditas hortikultura dengan nilai ekonomi yang tinggi, tantang yang dihadapi oleh petani salah satunya dalah kerentanan penyakit tomat terhadap penyakit. Identifikasi secara visual pada daun sulit diuraikan dengan sekali pandang, sehingga menyebabkan asumsi yang tidak akurat tentang penyakit tersebut. Akibatnya, mekanisme pencegahan yang dilakukan petani menjadi tidak efektif dan berdampak merugikan. Penelitian ini mengusulkan identifikasi penyakit tomat secara automatis menggunakan metode Convolution Neural Network. Dalam makalah ini kami melakukan evaluasi pada metode CNN dengan arsitektur Alexnet dengan konfigurasi layer untuk mencari hasil kinerja terbaik dari penggunaan parameter tersebut pada architektur Alexnet. Pada penelitian ini juga melakukan analisis yang diperoleh dari hubungan antara parameter yang digunakan terhadap kinerja akurasi, dan analisis terhadap dampak penggunaan parameter dengan jumlah dataset daun tomat dari dataset PlantVillage.
Co-Authors Abdul Syukur Abu Salam Ade Yusupa Affandy Affandy Agus Winarno, Agus Agustina, Feri Ahmad Akrom Ahmad Akrom Akrom, Ahmad Al-Azies, Harun ALI MUQODDAS Alvin, Fris Alzami, Farrikh Andi Kamaruddin Apriyanto Alhamad Arie Nugroho, Arie Arifin, Zaenal Arya Rezagama Sudrajat Azzahra, Tarissa Aura Baroroh, Nurul Bastiaans, Jessica Carmelita Catur Supriyanto Catur Supriyanto Catur Supriyanto Catur Supriyanto D, Ishak Bintang Darmawan, Aditya Aqil De Rosal Ignatius Moses Setiadi Dewi Nurdiyah Diana Aqmala Dwi Puji Prabowo Dwi Puji Prabowo Dwi Puji Prabowo, Dwi Puji Dzuha Hening Yanuarsari, Dzuha Hening Edi Noersasongko Enrico Irawan Erlin Dolphina Etika Kartikadarma Evanita Evanita, Evanita F. Alzami Fafaza, Safira Alya Fajrian Nur Adnan Fakhrurrozi Fakhrurrozi, Fakhrurrozi Farikh Al Zami Fathorazi Nur Fajri Fatkhuroji Fatkhuroji Fauzi Adi Rafrastara Fikri Diva Sambasri Fikri Diva Sambasri Firmansyah, Muhammad Ilham Go, Agnestia Agustine Djoenaidi Guruh Fajar Shidik Hamid, Maulana As’an Hartojo, James Harun Al Azies Hasan Asari Haydar, Muhammad Rifqi Fajrul Hendri Ramdan Henry Bastian, Henry I Ketut Eddy Purnama Ifan Rizqa Ika Novita Dewi Imran, Bahtiar Irham Ferdiansyah Katili Iswahyudi Iswahyudi Karim, Muh Nasirudin Karis W. Kartika, Gita khoiriya latifah Khoirunnisa, Emila Khoirur Rizky, Muhammad Ivan Kristhina Evandari Kurnia Prayoga Wicaksono Kurniawan Aji Saputra Kurniawan, Defri Kusumawati, Yupie Lalang Erawan Lesmarna, Salsabila Putri M. Arif Soeleman M. Arif Soleman Maulana, Isa Iant Megantara, Rama Aria Mira Nabila Moch Arief Soeleman Mochamad Arief Soeleman Mochamad Hariadi Moh Yusuf, Moh Moh. Arief Soeleman Moh. Yusuf Mohammad Arif Mohammad Syaifur Rohman Muhammad Naufal, Muhammad Muljono, - Muslih Muslih Muslih Muslih Noor Wahyudi Nuanza Purinsyira Nugroho, Muhammad Bayu Nur Azise Nurhindarto, Aris Nurhindarto, Aris Pergiwati, Dewi Prabowo, D.P. Pulung Nurtantio Andono Pulung Nurtantyo Andono Puri Sulistiyawati Puri Sulistiyawati Puri Sulistiyawati Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Putu Samuel Prihatmajaya R.A. Megantara Rama Aria Megantara Rama Aria Megantara Ramadhan Rakhmat Sani Ramadhani, Irfan Wahyu Ratmana, Danny Oka Riadi, Muhammad Fatah Abiyyu Rifqi Mulya Kiswanto Ritzkal, Ritzkal Rohman, Muhammad Syaifur Rony Wijanarko Rozada, Akfi Ruri Suko Basuki Santoso, Siane Saputra, Filmada Ocky Saputra, Resha Mahardhika Saraswati, Galuh Wilujeng Sasono Wibowo Sinaga, Daurat Soeleman, M. Arief Sri Winarno Stefanus Santosa Sulistyowati, Tinuk Sutini Dharma Oetomo Tamamy, Aries Jehan Teguh Tamrin Ullumudin, D.I.I Usman Sudibyo Vincent Suhartono Vincent Suhartono Vincent Suhartono Wibowo, Gentur Wahyu Nyipto Wildanil Ghozi Winarsih, Nurul Anisa Sri Yudha Tirto Pramonoaji Yuliman Purwanto Yuslena Sari, Yuslena Yuventius Tyas Catur Pramudi Zainal Arifin Hasibuan