p-Index From 2021 - 2026
6.574
P-Index
Claim Missing Document
Check
Articles

Semantic Rule Labeling dan Sentence Information Density Dalam Pemilihan Kalimat Representatif Cluster Pada Peringkasan Multi-Dokumen Gus Nanang Syaifuddiin; Agus Zainal Arifin; Diana Purwitasari
Inspiration: Jurnal Teknologi Informasi dan Komunikasi Vol 6, No 1 (2016): Jurnal Inspiration Volume 6 Issue 1
Publisher : STMIK AKBA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35585/inspir.v6i1.86

Abstract

Coverage dan salient merupakan masalah utama yang menjadi perhatian para peneliti dalam peringkasan dokumen. Pendekatan clustering mampu memberikan coverage yang baik terhadap semua topik namun tidak memiliki informasi-informasi yang bisa mewakili kalimat-kalimat lain (salience sentence).Salience dapat digali dengan melihat hubungan dari satu kalimat dengan kalimat lain yang dibangun dengan pendekatan position text graph, namun position text graph hanya mampu menggali hubungan antar kalimat tanpa memperhatikan peran semantik kata (“who” did “what” to “whom”, “where”, “when”, and “how”) dalam kalimat yang dibandingkan.Pada paper ini kami mengusulkan sebuah metode baru strategi pemilihan kalimat representatif cluster dengan pendekatan sentence information density dan Semantic Rule labeling. Hasil uji coba menunjukkan metode yang metode yang diusulkan mampu memilih kalimat ringkasan lebih baik dari metode Sentence Information Density (SID)  dengan rata-rata nilai Rouge-1 0.32511.
Analisis Sentimen Pada Review Pengguna Aplikasi Mobile Untuk Evaluasi Faktor Usability Septiyawan Rosetya Wardhana; Diana Purwitasari; Siti Rochimah
Jurnal Sistem dan Informatika (JSI) Vol 11 No 1 (2016)
Publisher : Bagian Perpustakaan dan Publikasi Ilmiah - Institut Teknologi dan Bisnis (ITB) STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (130.819 KB)

Abstract

Faktor usability merupakan aspek yang paling diperhatikan dalam pembuatan maupun pengujian aplikasi mobile. Evaluasi usability dapat dilakukan dengan melakukan analisis sentimen pada review pengguna aplikasi mobile. Orientasi sentimen inilah yang umumnya dijadikan sebagai acuan dalam proses evaluasi. Selain itu, setiap review pasti memiliki tingkat sentimen yang mencerminkan tinggi rendahnya orientasi sentimen, sehingga akan lebih efektif apabila tingkat sentimen juga dipertimbangkan dalam proses evaluasi. Berbeda dengan jenis perangkat lunak lainnya, aplikasi mobile memiliki batasan dan permasalahan sendiri yang tidak dimiliki perangkat lunak lain. Model PACMAD (People At The Centre of Mobile Application Development) merupakan model usability yang karakteristiknya disesuaikan dengan batasan dan permasalahan yang dimiliki oleh aplikasi mobile. Oleh karena itu, dalam penelitian ini diusulkan suatu metode analisis sentimen dengan mempertimbangkan tingkat sentimen pada opini pengguna aplikasi mobile untuk evaluasi faktor usability berdasarkan model PACMAD. Data review pengguna akan diklasifikasikan ke dalam faktor usability PACMAD dengan menggunakan metode TF.ICF, kemudian dianalisis orientasi dan tingkat sentimennya dengan menggunakan metode SentiWordNet Interpretation. Berdasarkan hasil ujicoba menggunakan data review dari 5 aplikasi mobile diperoleh rata-rata nilai akurasi klasifikasi faktor usability sebesar 82% dan akurasi sentimen sebesar 79%.
IMPLEMENTASI FITUR GEOMETRI DAN K-MEANS PADA PERHITUNGAN DAN SEGMENTASI SEL DARAH MERAH BERTUMPUK Faried Effendy; Chastine Fatichah; Diana Purwitasari
Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer Vol 9, No 3 (2014): Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer
Publisher : Mulawarman University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (550.548 KB) | DOI: 10.30872/jim.v9i3.173

Abstract

Segmentasi terhadap sel darah merah bertumpuk bertujuan untuk meningkatkan akurasi perhitungan sel darah merah. Tujuan penelitian ini adalah untukmensegmentasi sel darah merah bertumpuk menggunakan morfologi, fitur geometri dan k-means. Morfologi digunakan untuk preprocessing yakni memisahkan sel darah merah dengan backgroundyang tidak diperlukan seperti sel darah putih dan platelet, fitur geometri berupa eksentrisitas dan luasan digunakan sebagai pendeteksi sel darah merah bertumpuk, sedangkan proses segmentasi dilakukan oleh k-means. Akurasi hasil segmentasi dari metode yang diusulkan mencapai 96,31%, sedangkan error perhitungan sel darah merah setelah dilakukan segmentasi berkisar 2,43%.
Pemantauan Perhatian Publik terhadap Pandemi COVID-19 melalui Klasifikasi Teks dengan Deep Learning Novrindah Alvi Hasanah; Nanik Suciati; Diana Purwitasari
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 1 (2021): Februari 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (474.732 KB) | DOI: 10.29207/resti.v5i1.2927

Abstract

Monitoring public concern in the surrounding environment to certain events is done to address changes in public behavior individually and socially. The results of monitoring public attention can be used as a benchmark for related parties in making the right policies and strategies to deal with changes in public behavior as a result of the COVID-19 pandemic. Monitoring public attention can be done using Twitter social media data because the users of the media are quite high, so that they can represent the aspirations of the general public. However, Twitter data contains varied topics, so a classification process is required to obtain data related to COVID-19. Classification is done by using word embedding variations (Word2Vec and fastText) and deep learning variations (CNN, RNN, and LSTM) to get the classification results with the best accuracy. The percentage of COVID-19 data based on the best accuracy is calculated to determine how high the public's attention is to the COVID-19 pandemic. Experiments were carried out with three scenarios, which were differentiated by the number of data trains. The classification results with the best accuracy are obtained by the combination of fasText and LSTM which shows the highest accuracy of 97.86% and the lowest of 93.63%. The results of monitoring public attention to the time vulnerability between June and October show that the highest public attention to COVID-19 is in June.
Pemodelan Topik dengan LDA untuk Temu Kembali Informasi dalam Rekomendasi Tugas Akhir Diana Purwitasari; Aida Muflichah; Novrindah Alvi Hasanah; Agus Zainal Arifin
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 3 (2021): Juni 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (598.439 KB) | DOI: 10.29207/resti.v5i3.3049

Abstract

Undergraduate thesis as the final project, or in Indonesian called as Tugas Akhir, for each undergraduate student is a pre-requisite before student graduation and the successfulness in finishing the project becomes as one of learning outcomes among others. Determining the topic of the final project according to the ability of students is an important thing. One strategy to decide the topic is reading some literatures but it takes up more time. There is a need for a recommendation system to help students in determining the topic according to their abilities or subject understanding which is based on their academic transcripts. This study focused on a system for final project topic recommendations based on evaluating competencies in previous academic transcripts of graduated students. Collected data of previous final projects, namely titles and abstracts weighted by term occurences of TF-IDF (term frequency–inverse document frequency) and grouped by using K-Means Clustering. From each cluster result, we prepared candidates for recommended topics using Latent Dirichlet Allocation (LDA) with Gibbs Sampling that focusing on the word distribution of each topic in the cluster. Some evaluations were performed to evaluate the optimal cluster number, topic number and then made more thorough exploration on the recommendation results. Our experiments showed that the proposed system could recommend final project topic ideas based on student competence represented in their academic transcripts.
PEMBOBOTAN KATA BERDASARKAN KLASTER PADA OPTIMISASI COVERAGE, DIVERSITY DAN COHERENCE UNTUK PERINGKASAN MULTI DOKUMEN Ryfial Azhar; Muhammad Machmud; Hanif Affandi Hartanto; Agus Zainal Arifin; Diana Purwitasari
Jurnal Ilmiah Teknologi Infomasi Terapan Vol. 2 No. 3 (2016)
Publisher : Universitas Widyatama

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (394.174 KB) | DOI: 10.33197/jitter.vol2.iss3.2016.105

Abstract

[Id]Peringkasan yang baik dapat diperoleh dengan coverage, diversity dan coherence yang optimal. Namun, terkadang sub-sub topik yang terkandug dalam dokumen tidak terekstrak dengan baik, sehingga keterwakilan setiap sub-sub topik tersebut tidak ada dalam hasil peringkasan dokumen. Pada paper ini diusulkan metode baru pembobotan kata berdasarkan klaster pada optimisasi coverage, diversity dan coherence untuk peringkasan multi-dokumen. Metode optimasi yang digunakan ialah self-adaptive differential evolution (SaDE) dengan penambahan pembobotan kata berdasarkan hasil dari pembentukan cluster dengan metode Similarity Based Histogram Clustering (SHC). Metode SHC digunakan untuk mengklaster kalimat sehingga setiap sub-topik pada dokumen bisa terwakili dalam hasil peringkasan. Metode SaDE digunakan untuk mencari solusi hasil ringkasan yang memiliki tingkat coverage, diversity, dan coherence paling tinggi. Uji coba dilakukan pada 15 topik dataset Text Analysis Conference (TAC) 2008. Hasil uji coba menunjukkan bahwa metode yang diusulkan dapat menghasilkan ringkasan skor ROUGE-1 sebesar 0.6704, ROUGE-2 sebesar 0.2051, ROUGE-L sebesar 0.6271 dan ROUGE-SU sebesar 0.3951.Kata kunci : peringkasan multi dokumen, similarity based histogram clustering, coverage, diversity, coherence[En]Good summary can be obtained with optimizing coverage, diversity, and coherence. Nevertheless, sometime sub-topics wich is contained in the document is not extracted well, so that the representation of each sub-topic is appear in docment summarizarion result. In this paper, we propose new of term weighting based on? cluster in optimizing coverage, diversity, and coherence for multi-document summarization. Optimization method which is used is self-adaptive differential evolution (SaDE) with additional term weighting based on clustering result with Similarity Based Histogram Clustering (SHC). SHC is used to cluster sentence so that every sub-topic in the document can be represented in summarization result. SaDE is used to search summarization result solution which has high coverage, diversity, and coherence level. Experiment is done on 15 topics in Text Analysis Conference (TAC) 2008 dataset. Experimental results show that this proposed method can produce summarization score? ROUGE-1 0.6704, ROUGE-2 0.2051, ROUGE-L 0.6271 and ROUGE-SU 0.3951.Keywords: multy-document summarization, similarity based histogram clustering, coverage, diversity, coherence.
Cross-Domain Topic Learning Berbasis Frase untuk Pemodelan Topik pada Rekomendasi Kolaborasi Penelitian Vit Zuraida; Diana Purwitasari; Chastine Fatichah
INTEGER: Journal of Information Technology Vol 3, No 2 (2018)
Publisher : Fakultas Teknologi Informasi Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.integer.2018.v3i2.255

Abstract

Rekomendasi kolaborasi penelitian antardomain dapat diperoleh melalui dokumen publikasi ilmiah seperti judul, abstrak, dan bibliografi. Oleh karena itu, proses ekstraksi topik riset dari seorang peneliti merupakan tahapan penting. Model topik berbasis kata belum dapat merepresentasikan topik dengan baik sebab urutan kata pada dokumen tidak diperhitungkan. Penelitian ini mengusulkan sistem rekomendasi kolaborasi antardomain dengan metode Cross-Domain Topic Learning (CTL) Berbasis Frase. CTL Berbasis Frase terdiri dari tiga fase utama: (1) transformasi dokumen dari format bag-of-words menjadi bag-of-phrases, (2) pemodelan topik terhadap frase yang sudah dibentuk untuk mengetahui distribusi probabilitas keterkaitan peneliti dengan topik, (3) perangkingan rekomendasi kolaborasi dengan random walk with restart. Pengujian sistem terhadap domain Visualization dan Data Mining pada dataset  AMiner menunjukkan bahwa CTL Berbasis Frase lebih baik daripada CTL berbasis kata. Terdapat pengingkatan nilai precision sebesar ±10% pada 10 rekomendasi teratas dan ±5% pada 20 rekomendasi teratas.
Klasifikasi Multi Class Pada Analisis Sentimen Opini Pengguna Aplikasi Mobile Untuk Evaluasi Faktor Usability Septiyawan Rosetya Wardhana; Diana Purwitasari
INTEGER: Journal of Information Technology Vol 4, No 1: May 2019
Publisher : Fakultas Teknologi Informasi Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.integer.2019.v4i1.474

Abstract

Dalam proses pengembangan maupun pengujian perangkat lunak, faktor usability merupakan aspek yang paling penting. Evaluasi faktor usability tersebut dapat dilakukan dengan menganalisa orientasi sentimen pada opini pengguna berdasarkan faktor usability. Namun, setiap opini juga memiliki tingkat sentimen yang mencerminkan tinggi rendahnya orientasi sentimen, sehingga akan lebih efektif apabila tingkat sentimen juga dipertimbangkan dalam proses evaluasi. Selain itu, opini pengguna juga dapat memiliki lebih dari 1 faktor usability. Hal tersebut dikarenakan setiap dokumen opini dapat terdiri lebih dari 1 kalimat dimana setiap kalimat bisa memiliki faktor usability yang berbeda. Berbeda dengan perangkat lunak lainnya, aplikasi mobile memiliki batasan dan konteks tersendiri. Sehingga model usability yang digunakan juga berbeda dengan perangkat lunak lainnya. Model PACMAD merupakan model usability yang disesuaikan dengan batasan dan konteks dari aplikasi mobile. Oleh karena itu dalam penelitian ini diusulkan suatu metode  evaluasi faktor usability dengan menggunakan klasifikasi multi class pada analisis sentimen dengan mempertimbangkan tingkat sentimen opini pengguna aplikasi mobile berdasarkan model usability PACMAD. Data opini pengguna dikaslifikasian dengan model klasifikasi multi class dengan metode naive bayes, kemudian dianalisis orientasi dan tingkat sentimennya dengan menggunakan metode SentiWordNet Interpretation. Berdasarkan hasil ujicoba diperoleh nilai akurasi sebesar 74,7%, precision 43,2%, recall 29,5% dan f-measure 34,5%.
Fuzzy Multi-Attribute Decision Making untuk Klasifikasi Potensi Kewirausahaan Berdasarkan Theory of Planned Behavior Nova Rijati; Diana Purwitasari; Surya Sumpeno; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 9 No 1: Februari 2020
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1404.119 KB) | DOI: 10.22146/jnteti.v9i1.118

Abstract

Indonesia government has launched a program to encourage youth entrepreneurship as a strategy to improve national economy. This paper proposes a method to find an entrepreneurial potential based on academic behavior features that are extracted from the Higher Education Database PDDikti. The proposed approach applies the Fuzzy Multi-Attribute Decision Making (FMADM) technique. Rules for extracting features of student academic behavior were following Theory of Planned Behavior (TPB) and resulting in 14 features. The FMADM model combines Fuzzy Simple Additive Weighting and Fuzzy Technique for Order Preference by Similarity to Ideal Solution, which is called FSAW-TOPSIS. Friedman Test demonstrated that FSAW-TOPSIS gives more optimal solution with the highest Mean Rank of the potential entrepreneurial value of 2.96. Besides, through Hamming Distance Test, FSAW-TOPSIS results the best order with a 98% percentage and ranking of the smallest Squared Error of 0.3%, which makes the proposed model offered a better solution. It can be concluded that using TPB variables in PDDikti environment with FSAW-TOPSIS technique provides an optimal recommendation on student entrepreneurship potential, which can be used as a part of a decision-making system for higher education management.
Ekstraksi Frasa Kunci pada Penggabungan Klaster berdasarkan Maximum-Common-Subgraph Adhi Nurilham; Diana Purwitasari; Chastine Fatichah
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 7 No 3: Agustus 2018
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1771.664 KB)

Abstract

Document clustering based on topic similarities helps users in searching from a collection of scientific articles. Topic labels are necessesary for describing subjects of the document clusters. Clusters with related subjects or contextual similarities can be merged to produce more descriptive labels. Relations between those words in one context can be modelled as a graph. Instead of single word, this paper proposed cluster labeling of phrases from scientific articles withcluster merging based on graph. The proposed method begins with K-Means++ for clustering the scientific articles. Then, the candidates of word phrases from document clusters are extracted using Frequent Phrase Mining which inspired by Apriori algorithm. Each cluster result has a representation graph from those extracted word phrases. An indicator value from each graph shows any similarities of graph structures which is calculated with Maximum Common Subgraph (MCS). Those clusters are merged if there are any structure similarities between them. Topic labels of clusters are keyword phrases extracted from a representation graph of previous merged clusters using TopicRank algorithm. The merging process which becomes the contribution of this paper is considering topic distribution within clusters for phrase extraction. The proposed method evaluationis performed based on topic coherence of the merged clusterslabel. The results show that proposed method can improve topic coherence on the merged clusters with MCS graph size percentage as the key factor.Further observation shows that merged cluster labels consistent to MCS graph.
Co-Authors Abdillah, Abid Famasya Abdillah, Surya Abid Famasya Abdillah Achmad Affandi Ade Afrian Adhi Nurilham Adi Surya Suwardi Ansyah Adillion, Ilham Gurat Adni Navastara, Dini Agus Budi Raharjo Agus Budi Raharjo Agus Zainal Arifin Agus Zainal Arifin Ahmad Syauqi Ahmad Syauqi Aida Muflichah Akwila Feliciano Akwila Feliciano Alif Akbar Fitrawan, Alif Akbar Alqis Rausanfita Aminul Wahib Aminul Wahib Aminul Wahib Apriantoni Apriantoni Apriantoni, Apriantoni Ardianto Ardianto Ariadi Retno Tri Hayati Arief Rahman Arif Fadllullah Arini Rosyadi Ario Bagus Nugroho Arrie Kurniawardhani Arya Putra Kurniawan Asiyah Nur Kholifah Atikah, Luthfi Bambang Setiawan Baskoro Adi Pratomo Baskoro, Fajar Benito, Davian Budi Pangestu Budi Rahardjo Budi Raharjo, Agus Budiyono, Yanuardhi Arief Buliali, Joko Lianto Cahyaningtyas, Zakiya Azizah Chastine Fatichah Chilyatun Nisa, Chilyatun Christian Sri kusuma Aditya, Christian Sri kusuma Cornelius Bagus Purnama Putra Damayanti, Putri Daniel Oranova Siahaan Daniel Swanjaya Dasrit Debora Kamudi Dhian Kartika Dian Saputra Dini Adni Navastara, Dini Adni Dwi Sunaryono Dwi Sunaryono Edy Sukotjo Eko Riduwan Elshe Erviana Angely Erlinda Argyanti Nugraha Erlinda Argyanti Nugraha Esti Yuniar F.X. Arunanto Fahmi Amiq Fahrur Rozi Fajar Baskoro Fajar Baskoro Falach Asy'ari, Misbachul Fandy Kuncoro Adianto Fandy Kuncoro Adianto Faried Effendy Febri Fernanda Febriliyan Samopa Fransiscus Xaverius Arunanto Galih Hendra Wibowo Ginardi, Raden Venantius Hari Glory Intani Pusposari Gurat Adillion, Ilham Gus Nanang Syaifuddiin Hadziq Fabroyir Hafidz, Abdan Hamidi, Mohammad Zaenuddin Handayani Tjandrasa Haniefardy, Addien Hanif Affandi Hartanto Haykal, Muhammad Farhan Herdayanto Sulistyo Putro Hilya Tsaniya Hudan Studiawan Husna, Farida Amila I Ketut Eddy Purnama I Made Satria Bimantara Ilmi, Akhmad Bakhrul Imam Santosa Indra Lukmana Irdayanti, Marina Ivonne Soejitno Juanita, Safitri Juanita, Safitri Juli Purwanto Kardawi, Muhammad Yusuf Kautsar, Faiz Kevin Christian Hadinata Kevin Christian Hadinata Khadijah F. Hayati Kurnia Aji Tritamtama Lailatul Hidayah M. Abdillah M. Abdul Wakhid Mabahist, Fahril Maheswari, Clarissa Luna Mamluatul Hani’ah Mauridhi Hery Purnomo Mirza Hamdhani Misbakhul Munir Irfan Subakti Muhamad Nasir Muhammad Machmud Muhammad Mirza Muttaqi Nabila Puspita Firdi Nada Fitrieyatul Hikmah Nanik Suciati Narandha Arya Ranggianto Nova Rijati Novemi Uki A Novrindah Alvi Hasanah Nugraha, Raditya Hari Nur Azizah, Anisa Nur Hayatin Nurilham, Adhi Oktaviandra Pradita Putri Oktaviandra Pradita Putri, Oktaviandra Pradita Paramastri Ardiningrum Putu Praba Santika Putu Utami Andarini S. Putu Yuwono Kusmawan Raihan, Muhammad Rangga Kusuma Dinata Rangga Kusuma Dinata Ratih Nur Esti Anggraini, Ratih Nur Esti Rendra Dwi Lingga P. Resti Ludviani Rio Indralaksono Rizal Setya Perdana Rizka Sholikah Rizka Wakhidatus Sholikah Rizka Wakhidatus Sholikah, Rizka Wakhidatus Rizqa Afthoni Rozi, Fahrur RR. Ella Evrita Hestiandari Rully Soelaiman Rully Sulaiman Ryfial Azhar, Ryfial Safhira Maharani Safhira Maharani Safitri, Julia Salim Bin Usman Salim Bin Usman Salsabila Mazya Permataning Tyas Salsabila Salsabila Satrio Hadi Wijoyo Satrio Verdianto Satrio Verdianto Sembiring, Fred Erick Septiyan Andika Isanta Septiyan Andika Isanta Septiyawan Rosetya Wardhana Septiyawan Rosetya Wardhana Sherly Rosa Anggraeni Sherly Rosa Anggraeni Sidharta, Bayu Adjie Sihombing, Drigo Alexander Siti Rochimah Surya Sumpeno Suwida, Katon Syadza Anggraini Tanzilal Mustaqim Tegar Rachman Muzzammil Tesa Eranti Putri Tri Arief Sardjono Tsabbit Aqdami Mukhtar, Tsabbit Aqdami Umy Rizqi Verdianto, Satrio Victor Hariadi Vit Zuraida Wakhid, Muhammad Abdul Wardhana, Septiyawan R. Wardhana, Septiyawan Rosetya Wicaksono, Farhan Wijayanti Nurul Khotimah Wijoyo, Satrio Hadi Windy Deftia Mertiana Wisma Dwi Prastya, Ifnu Wulansari Wulansari Yasinta Romadhona Yatestha, Anak Agung Yoga Yustiawan Yonathan, Vincent Yos Nugroho Yudhi Purwananto Yufis Azhar Yuhana, Umi Laili Yulia Niza Yulia Niza Yulian Findawati Yunianto, Dika R. Zahrul Zizki Dinanto Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas