p-Index From 2021 - 2026
6.574
P-Index
Claim Missing Document
Check
Articles

Sistem Pendaftaran Online untuk PPDB SMA/SMK Negeri Provinsi Jawa Timur Diana Purwitasari; Alqis Rausanfita; Hadziq Fabroyir
Sewagati Vol 4 No 2 (2020)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (427.514 KB)

Abstract

Penerimaan Peserta Didik Baru (PPDB) merupakan langkah awal dalam bidang pendidikan yang menjadi agenda rutin tiap tahunnya dengan dua mekanisme yaitu luar jaringan (offline) dan dalam jaringan (online). Namun pada tahun 2020, Indonesia bahkan dunia sedang ditimpa pandemi Covid-19, yang menyebabkan pemerintah provinsi Jawa Timur tidak bisa melaksanakan PPDB dengan mekanisme luar jaringan (offline). Oleh karena itu, kegiatan pengabdian masyarakat ini membangun sebuah sistem pendaftaran PPDB berbasis web yang dapat memfasilitasi tiga jenis tahapan pendaftaran PPDB jenjang SMA / SMK Negeri Jawa Timur 2020. Sebelum melakukan pendaftaran pada salah satu jalur calon peserta didik harus melaksanakan tahap pengambilan pin. Pengabdian ini mengadopsi konsep objek oriented programming (oop) dengan menggunakan framework code igniter. Sistem pendaftaran online untuk PPDB jenjang SMA/SMK Negeri Jawa Timur telah diuji dengan menggunakan teknik blackbox sehingga dapat dipastikan sistem telah berjalan dengan baik. Sebelum pendaftaran PPDB berlangsung pada tanggal 8 juni 2020 sampai dengan 27 juni 2020, tim informatika ITS telah melakukan sosialisasi sistem, namun tetap saja ketika kegiatan ini berlangsung terdapat beberapa kendala yang dialami calon peserta didik dalam menggunakan sistem. Untuk itu, tim informatika ITS melakukan pendampingan untuk mengatasi kendala-kendala yang terjadi selama berlangsungnya pendaftaran PPDB.
Pemanfaatan Platform Google Classroom untuk Pembelajaran Daring di Pondok Pesantren Miftahul Ulum Al-Islamy, Bangkalan, Madura Dini Adni Navastara; Nanik Suciati; Chastine Fatichah; Diana Purwitasari; Handayani Tjandrasa; Agus Zainal Arifin; Akwila Feliciano; Yulia Niza; Rangga Kusuma Dinata; Safhira Maharani; Ahmad Syauqi; Sherly Rosa Anggraeni; Fandy Kuncoro Adianto; Zakiya Azizah Cahyaningtyas; Salim Bin Usman; Kevin Christian Hadinata
Sewagati Vol 4 No 3 (2020)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (269.198 KB)

Abstract

Proses pembelajaran daring menjadi hambatan tersendiri dalam bidang pendidikan, terlebih untuk pendidikan wajib yang harus dilakukan secara bertatap muka langsung antara pengajar dan pelajar. Di luar faktor permasalahan eksternal, permasalahan internal perlu diselesaikan terlebih dahulu, yaitu media pembelajaran. Salah satu platform digital yang tersedia sebagai media pembelajaran untuk menunjang pembelajaran secara daring adalah Google Classroom. Aplikasi Google Classroom berbasis web yang berbentuk pembelajaran asynchronous atau dapat dikatakan pemberian materi ajar dilakukan secara tidak langsung. Walaupun sebuah media daring sudah tersedia, masih ada yang belum mengenal atau memahami penggunaan aplikasi Google Classroom sebagai media ajar mereka. Oleh karena itu, kami mengadakan pengabdian masyarakat berupa pelatihan tentang penggunaan aplikasi Google Classroom bagi guru-guru di Pondok Pesantren Miftahul Ulum Al-Islamy, yang berada di Bangkalan, Madura. Selain itu, tim pengabdi juga melakukan pendampingan bagi guru-guru dalam mempraktikkan penggunaan Google Classroom sesuai dengan mata pelajaran yang diajar. Berdasarkan hasil survei, sebanyak 91% dari total peserta pelatihan menyebutkan bahwa pelatihan ini dapat meningkatkan pengetahuan dan kemampuan secara softskill dan hardskill para guru.
Pendampingan Modul Pengumpulan dan Pelaporan Data pada Aplikasi Penelusuran COVID-19 untuk Dinas Kesehatan Jawa Timur Agus Budi Raharjo; Erlinda Argyanti Nugraha; Fransiscus Xaverius Arunanto; Dwi Sunaryono; Fajar Baskoro; Diana Purwitasari; Misbakhul Munir Irfan Subakti
Sewagati Vol 5 No 1 (2021)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1149.283 KB)

Abstract

Provinsi Jawa Timur (Jatim) adalah wilayah terpadat kedua di Indonesia dengan sekitar 39 juta penduduk tersebar di 38 kota. Selain Jakarta sebagai daerah terbanyak dengan pasien COVID-19, Jatim merupakan salah satu provinsi dengan pasien terkonfirmasi terbanyak. Dengan kondisi tersebut, penelusuran dan prediksi pasien menjadi hal vital yang dapat membantu pemerintah provinsi dalam mempelajari pola penyebaran sehingga mampu memberikan landasan dalam mengambil keputusan. Saat ini ITS khususnya Fakultas Teknologi Elektro dan Informatika Cerdas (FTEIC) sudah berpartisipasi aktif dalam mendampingi pembangunan sistem pengelolaan data lengkap pasien terkonfirmasi. Sistem yang dibangun tersebut diaplikasikan di wilayah Jatim, di mana ITS menjadi mitra Dinas Komunikasi dan Informasi (Diskominfo) dan Dinas Kesehatan (Dinkes) Jatim. Meskipun saat ini sistem pengelolaan data sudah dibangun, namun fitur penelusuran dan prediksi masih belum bisa dioptimalkan karena terkendala tenaga ahli. Oleh karena itu, departemen Informatika ITS khususnya laboratorium Algoritma dan Pemrograman (AP) menawarkan untuk melanjutkan pendampingan dengan Diskominfo dan Dinkes Jatim dalam pengumpulan dan pelaporan data guna menunjang fitur penelusuran dan prediksi tersebut. Dengan adanya pengabdian ini, diharapkan dapat mengoptimalkan sistem yang sudah dibangun sebelumnya dan dapat diadaptasi agar bisa mengelola data pandemi di masa mendatang sebagai bentuk kontribusi mendukung usaha pemerintah dalam menangani COVID-19.
PlasmaHub: Aplikasi Donor Plasma Konvalesen Berbasis Web Pengolah Informasi guna Memudahkan Pemetaan Pendonoran di Jawa Timur Agus Budi Raharjo; Diana Purwitasari; Elshe Erviana Angely; Herdayanto Sulistyo Putro; Edy Sukotjo; Imam Santosa; Ivonne Soejitno; Juli Purwanto
Sewagati Vol 7 No 2 (2023)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1863.508 KB) | DOI: 10.12962/j26139960.v7i2.456

Abstract

Pandemi COVID-19 telah memicu krisis kesehatan global. Sampai dengan saat ini, belum ada pilihan yang terbukti untuk pemulihan bagi masyarakat yang terkonfirmasi positif. Salah satu strategi jangka pendek untuk membantu pemulihan pasien terkonfirmasi adalah melalui terapi plasma konvalesen. Plasma konvalesen yang didapat dari individu penyintas COVID-19 mampu digunakan untuk pemeliharaan kesehatan pasca terpapar atau mempercepat penyembuhan penyakit menular. Saat ini, jumlah penyintas yang banyak di Indonesia tidak sebanding dengan masyarakat yang telah melakukan donor plasma konvalesen. Hal tersebut mengakibatkan kebutuhan plasma yang tinggi dengan ketersediaan pendonor yang rendah. Pasien harus menyebarkan data pribadi mereka melalui media sosial untuk mendapatkan golongan darah yang cocok. Tim Satuan Tugas COVID-19 ITS bekerja sama dengan ikatan alumni penyintas COVID-19 RS Indrapura berpartisipasi aktif dalam membangun aplikasi berbasis web PlasmaHub, untuk membantu menjembatani antara pemohon dan pendonor plasma konvalesen secara anonim, sehingga meminimalisir tersebarnya data pribadi. Sosialisasi penggunaan aplikasi untuk meningkatkan peminat donor plasma konvalesen dilakukan dengan peresmian oleh rektor ITS, konferensi pers, dan webinar. Saat ini, aktivitas sosialisasi sudah dipublikasi ke lebih dari dua puluh media massa nasional. Aplikasi yang diusulkan diharapkan dapat membantu PMI dalam meningkatkan stok plasma konvalesen, mempermudah masyarakat untuk mendapat donor plasma, dan turut serta melindungi keamanan data pribadi pasien.
A Clustering Approach for Mapping Dengue Contingency Plan Husna, Farida Amila; Purwitasari, Diana; Sidharta, Bayu Adjie; Sihombing, Drigo Alexander; Fahmi, Amiq; Purnomo, Mauridhi Hery
Scientific Journal of Informatics Vol 9, No 2 (2022): November 2022
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v9i2.36885

Abstract

Purpose: The dengue epidemic has an increasing number of sufferers and spreading areas along with increased mobility and population density. Therefore, it is necessary to control and prevent Dengue Hemorrhagic Fever (DHF) by mapping a DHF contingency plan. However, mapping a dengue contingency plan is not easy because clinical and managerial issues, vector control, preventive measures, and surveillance must be considered. This work introduces a cluster-based dengue contingency planning method by grouping patient cases according to their environment and demographics, then mapping out a plan and selecting the appropriate plan for each area.Methods: We used clustering with silhouette scoring to select features, the best cluster formation, the best clustering method, and cluster severity. Cluster severity is carried out by levelling the attributes of the average value to low, medium, high, and extreme, which are related to the plans each region sets for village type and season type.Result: In five years of data (2016-2020) ±15K cases from Semarang City, Indonesia, feature selection results show that environmental and demography group features have the biggest silhouette score. With these features, it is found that K-Means has a high silhouette score compared to DBSCAN and agglomerative with three optimum numbers of clusters. K-Means also successfully mapped the cluster severity and assigned the cluster to a suitable contingency policy.Novelty: Most of the research on DHF cases is about predicting DHF cases and measuring the risk of DHF occurrence. There are not many studies that discuss the policy recommendations for dengue control.
Aspect Based Sentiment Analysis of Product Review Using Memory Network Ismet, Hilya Tsaniya; Mustaqim, Tanzilal; Purwitasari, Diana
Scientific Journal of Informatics Vol 9, No 1 (2022): May 2022
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v9i1.34094

Abstract

Abstract. Purpose: Consumer opinion is one of the essential keys that affect the success of a product. Sentiment analysis of consumer opinion is needed to find out information about customer satisfaction for companies in the decision-making process. The traditional sentiment analysis process extracts a complete sentiment from a single sentence. However, it does not consist of only one sentiment in one sentence. The total number depends on the number of aspects that make up the sentence. Therefore, a sentiment analysis process is needed to pay attention to aspects.Methods: This research focuses on product reviews from Indonesian e-commerce on several aspects of sentiment. Uses fastText word embedding to avoid Out of Vocabulary in datasets and Gated Recurrent Units for aspect spread detection. Sentiment classification on aspects using the Memory Network method.Result: The experiment results showed that aspect-based sentiment classification predictions had an accuracy of 83% compared to 78% overall classification predictions for review texts, indicating that aspect-based sentiment analysis can improve model performance on product review classification predictions.Novelty: Most product reviews analysis use document-level classification to extract and predict sentiment reviews, aspect-based analysis can be applied to product reviews for better sentiment understanding, using Memory Network to store important information explicitly on aspects and polarity.
STRATEGI PEMILIHAN KALIMAT PADA PERINGKASAN MULTI DOKUMEN Satrio Verdianto; Agus Zainal Arifin; Diana Purwitasari
NJCA (Nusantara Journal of Computers and Its Applications) Vol 1, No 2 (2016): Desember 2016
Publisher : Computer Society of Nahdlatul Ulama (CSNU) Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36564/njca.v1i2.14

Abstract

Ringkasan berita diartikan sebagai teks yang dihasilkan dari satu atau lebih kalimat yang menyampaikan informasi penting dari berita. Salah satu fase penting dalam peringkasan adalah pembobotan kalimat (sentence scoring). Dimana pada peringkasan berita, metode pembobotannya sebagian besar menggunakan fitur dari berita sendiri. Berdasarkan hasil dari penelitian [3] bahwa untuk pembobotan kalimat pada dokumen yang memiliki karakter teks pendek dan terstruktur seperti berita maka teknik pembobotan kalimat terbaik adalah dengan menggunakan kombinasi dari keempat fitur yaitu word frequency, TF-IDF, posisi kalimat, dan kemiripan kalimat terhadap judul (Resemblance to the title ). Pada penelitian ini kombinasi keempat fitur tersebut dibandingkan dengan kombinasi tiga fitur dan dua fitur dan dievaluasi menggunakan nilai ROUGE-N dan dievaluasi berdasarkan lama waktu eksekusi. Berdasarkan hasil uji coba didapatkan hasil bahwa yang paling optimal diantara keempat kombinasi fitur tersebut adalah kombinasi antara dua buah fitur yakni fitur posisi kalimat dan word frequency dengan nilai ROUGE-N sebesar 0.679 dan lama waktu eksekusi 28.458 detik.
Pengklasteran Data Pelanggan Dari Aplikasi Mobile Untuk Penentuan Strategi Pemasaran Produk PLN Kurnia Aji Tritamtama; Diana Purwitasari
Journal of Information System,Graphics, Hospitality and Technology Vol. 5 No. 2 (2023): Journal of Information System, Graphics, Hospitality and Technology
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37823/insight.v5i2.323

Abstract

Perkembangan teknologi dan internet memungkinkan pengguna bertransaksi melalui aplikasi seluler, termasuk pembayaran tagihan dan pembelian token listrik. Aplikasi PLN Mobile telah diunduh lebih dari 35 juta pengguna sejak 2016. Pertumbuhan pengguna juga meningkatkan riwayat transaksi listrik. Data tersebut belum dimanfaatkan oleh PLN UID Sulselrabar. Menariknya kinerja penjualan selama empat bulan terakhir menunjukkan adanya masalah di akhir tahun 2023. Penelitian ini menggunakan model Recency-Frequency-Monetary (RFM) dengan mengamati riwayat transaksi listrik selama satu tahun terakhir pada aplikasi PLN Mobile, untuk membantu perusahaan dalam menentukan strategi pemasaran efektif. Data dari Virtual Command Center PLN tanggal 11 Januari 2023 digunakan untuk memodelkan RFM dengan mengkategorikan dan mengevaluasi perilaku pelanggan berdasarkan tiga faktor: recency (jarak transaksi), frequency (jumlah transaksi), dan monetary (total nilai transaksi). Setelah itu, klaster-klaster akan diberi label berdasarkan karakteristik anggotanya dan strategi pemasaran akan ditentukan untuk setiap target pasar yang dipilih. Hasil analisis menunjukkan bahwa model RFM berguna untuk menganalisis perilaku pelanggan dan memberikan segmentasi yang bernilai bagi perusahaan. Terdapat 3 klaster yang dihasilkan, yaitu Dormant Customers, Typical Customers, dan ‘Everyday’ Shoppers. Berdasarkan model RFM, dipilih pendekatan Full Market Coverage dan Multiple Segment Specialization dalam menentukan target pasar. Hal ini memudahkan dalam merumuskan strategi pemasaran dalam upaya untuk meningkatkan kinerja penjualan perusahaan.
Ekstraksi Ciri Produktivitas Dinamis untuk Prediksi Topik Pakar dengan Model Discrete Choice Diana Purwitasari; Chastine Fatichah; Surya Sumpeno; Mauridhi Hery Purnomo
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 7 No 4: November 2018
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1928.298 KB)

Abstract

Recommendation of active or productive experts is indispensable in supporting collaborations. Activities of publication and citation indicate expert productivity. An expert can be inferred to have an interest in a subject through productivity in that particular topic. Since an expert can change interests over time, the contribution of this paper is a Discrete Choice Model (DCM) based on topic productivities to predict the primary interests of the experts. DCM uses features extracted from bibliographic data of citation relation and title-abstract texts. Before extracting productivity features and dynamicity features to represent interest changes, title clustering with KMeans++ is used to identify research topics. There are six productivity features and five dynamicity values for each productivity feature to demonstrate the expert behavior. Therefore, a clustered topic as a research interest is represented as an expert choice with 30 extracted features in the proposed method. The experiments used multinomial logistic regression for DCM and a log-likelihood indicator for the fitted models of the features. The resulted DCM models showed that productive behavior of the experts by doing many publications and receiving many citations effected to the precision of topic prediction by 80%. Some features were better for predicting primary interests of the expert. It was demonstrated with a lower precision value of 60% by using features that represent the expert behavior of only doing publication or only getting citation.
Rekomendasi Produk Berbasis Collaborative Filtering Menggunakan Factorization Machine Graph Convolutional Networks Sherly Rosa Anggraeni; Diana Purwitasari; Chastine Fatichah; Yoga Yustiawan
ILKOMNIKA: Journal of Computer Science and Applied Informatics Vol 5 No 2 (2023): Volume 5, Nomor 2, Agustus 2023
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28926/ilkomnika.v5i2.556

Abstract

Rekomendasi produk memiliki peran yang signifikan dalam berbagai industri, termasuk e-commerce, ritel, perhotelan, dan keuangan. Rekomendasi dapat meningkatkan kepuasan pelanggan dan penjualan dengan membantu pelanggan menemukan produk yang relevan. Pendekatan collaborative filtering digunakan dalam rekomendasi produk ini karena data yang tersedia hanya berfokus pada fitur pengguna. Pendekatan ini memanfaatkan data interaksi pengguna-produk untuk mengungkap pola dan kesamaan di antara para pengguna. Representasi graf digunakan untuk memodelkan hubungan interaksi pengguna-produk, yang memungkinkan pemodelan yang lebih komprehensif dari ketergantungan dan hubungan antara pengguna dan produk. Penelitian ini menggunakan GCN dalam kombinasi dengan Factorization machine (FM) untuk meningkatkan personalisasi rekomendasi. GCN menggunakan konvolusi graf untuk menyebarkan dan memperbarui node embedding berdasarkan hubungan ketetanggaan mereka. GCN memanfaatkan informasi lingkungan sekitar dan struktur graf yang lebih luas, untuk meningkatkan pemahaman tentang preferensi pengguna dan menghasilkan rekomendasi yang dipersonalisasi. GCN juga dapat mengatasi keterbatasan metode lain dengan mempertimbangkan hubungan yang lebih rinci antar produk dan fitur unik dari setiap produk. FM mempertimbangkan interaksi antara fitur pengguna dan fitur produk, sehingga memahami preferensi pengguna secara lebih mendalam. Diharapkan dengan mengintegrasikan kekuatan GCN dan FM, rekomendasi produk dapat memberikan pengalaman pengguna yang lebih menarik dan menyenangkan.
Co-Authors Abdillah, Abid Famasya Abdillah, Surya Abid Famasya Abdillah Achmad Affandi Ade Afrian Adhi Nurilham Adi Surya Suwardi Ansyah Adillion, Ilham Gurat Adni Navastara, Dini Agus Budi Raharjo Agus Budi Raharjo Agus Zainal Arifin Agus Zainal Arifin Ahmad Syauqi Ahmad Syauqi Aida Muflichah Akwila Feliciano Akwila Feliciano Alif Akbar Fitrawan, Alif Akbar Alqis Rausanfita Aminul Wahib Aminul Wahib Aminul Wahib Apriantoni Apriantoni Apriantoni, Apriantoni Ardianto Ardianto Ariadi Retno Tri Hayati Arief Rahman Arif Fadllullah Arini Rosyadi Ario Bagus Nugroho Arrie Kurniawardhani Arya Putra Kurniawan Asiyah Nur Kholifah Atikah, Luthfi Bambang Setiawan Baskoro Adi Pratomo Baskoro, Fajar Benito, Davian Budi Pangestu Budi Rahardjo Budi Raharjo, Agus Budiyono, Yanuardhi Arief Buliali, Joko Lianto Cahyaningtyas, Zakiya Azizah Chastine Fatichah Chilyatun Nisa, Chilyatun Christian Sri kusuma Aditya, Christian Sri kusuma Cornelius Bagus Purnama Putra Damayanti, Putri Daniel Oranova Siahaan Daniel Swanjaya Dasrit Debora Kamudi Dhian Kartika Dian Saputra Dini Adni Navastara, Dini Adni Dwi Sunaryono Dwi Sunaryono Edy Sukotjo Eko Riduwan Elshe Erviana Angely Erlinda Argyanti Nugraha Erlinda Argyanti Nugraha Esti Yuniar F.X. Arunanto Fahmi Amiq Fahrur Rozi Fajar Baskoro Fajar Baskoro Falach Asy'ari, Misbachul Fandy Kuncoro Adianto Fandy Kuncoro Adianto Faried Effendy Febri Fernanda Febriliyan Samopa Fransiscus Xaverius Arunanto Galih Hendra Wibowo Ginardi, Raden Venantius Hari Glory Intani Pusposari Gurat Adillion, Ilham Gus Nanang Syaifuddiin Hadziq Fabroyir Hafidz, Abdan Hamidi, Mohammad Zaenuddin Handayani Tjandrasa Haniefardy, Addien Hanif Affandi Hartanto Haykal, Muhammad Farhan Herdayanto Sulistyo Putro Hilya Tsaniya Hudan Studiawan Husna, Farida Amila I Ketut Eddy Purnama I Made Satria Bimantara Ilmi, Akhmad Bakhrul Imam Santosa Indra Lukmana Irdayanti, Marina Ivonne Soejitno Juanita, Safitri Juanita, Safitri Juli Purwanto Kardawi, Muhammad Yusuf Kautsar, Faiz Kevin Christian Hadinata Kevin Christian Hadinata Khadijah F. Hayati Kurnia Aji Tritamtama Lailatul Hidayah M. Abdillah M. Abdul Wakhid Mabahist, Fahril Maheswari, Clarissa Luna Mamluatul Hani’ah Mauridhi Hery Purnomo Mirza Hamdhani Misbakhul Munir Irfan Subakti Muhamad Nasir Muhammad Machmud Muhammad Mirza Muttaqi Nabila Puspita Firdi Nada Fitrieyatul Hikmah Nanik Suciati Narandha Arya Ranggianto Nova Rijati Novemi Uki A Novrindah Alvi Hasanah Nugraha, Raditya Hari Nur Azizah, Anisa Nur Hayatin Nurilham, Adhi Oktaviandra Pradita Putri Oktaviandra Pradita Putri, Oktaviandra Pradita Paramastri Ardiningrum Putu Praba Santika Putu Utami Andarini S. Putu Yuwono Kusmawan Raihan, Muhammad Rangga Kusuma Dinata Rangga Kusuma Dinata Ratih Nur Esti Anggraini, Ratih Nur Esti Rendra Dwi Lingga P. Resti Ludviani Rio Indralaksono Rizal Setya Perdana Rizka Sholikah Rizka Wakhidatus Sholikah Rizka Wakhidatus Sholikah, Rizka Wakhidatus Rizqa Afthoni Rozi, Fahrur RR. Ella Evrita Hestiandari Rully Soelaiman Rully Sulaiman Ryfial Azhar, Ryfial Safhira Maharani Safhira Maharani Safitri, Julia Salim Bin Usman Salim Bin Usman Salsabila Mazya Permataning Tyas Salsabila Salsabila Satrio Hadi Wijoyo Satrio Verdianto Satrio Verdianto Sembiring, Fred Erick Septiyan Andika Isanta Septiyan Andika Isanta Septiyawan Rosetya Wardhana Septiyawan Rosetya Wardhana Sherly Rosa Anggraeni Sherly Rosa Anggraeni Sidharta, Bayu Adjie Sihombing, Drigo Alexander Siti Rochimah Surya Sumpeno Suwida, Katon Syadza Anggraini Tanzilal Mustaqim Tegar Rachman Muzzammil Tesa Eranti Putri Tri Arief Sardjono Tsabbit Aqdami Mukhtar, Tsabbit Aqdami Umy Rizqi Verdianto, Satrio Victor Hariadi Vit Zuraida Wakhid, Muhammad Abdul Wardhana, Septiyawan R. Wardhana, Septiyawan Rosetya Wicaksono, Farhan Wijayanti Nurul Khotimah Wijoyo, Satrio Hadi Windy Deftia Mertiana Wisma Dwi Prastya, Ifnu Wulansari Wulansari Yasinta Romadhona Yatestha, Anak Agung Yoga Yustiawan Yonathan, Vincent Yos Nugroho Yudhi Purwananto Yufis Azhar Yuhana, Umi Laili Yulia Niza Yulia Niza Yulian Findawati Yunianto, Dika R. Zahrul Zizki Dinanto Zakiya Azizah Cahyaningtyas Zakiya Azizah Cahyaningtyas