p-Index From 2021 - 2026
7.838
P-Index
This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Psikologika : Jurnal Pemikiran dan Penelitian Psikologi dCartesian: Jurnal Matematika dan Aplikasi JURNAL SISTEM INFORMASI BISNIS Prosiding KOMMIT BIOTROPIA - The Southeast Asian Journal of Tropical Biology Jurnal Sains dan Teknologi Jurnal Buana Informatika TELKOMNIKA (Telecommunication Computing Electronics and Control) Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Indonesian Journal of Mathematics and Natural Sciences Jurnal Ilmiah Kursor Noetic Psychology JTSL (Jurnal Tanah dan Sumberdaya Lahan) Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Transformatika JUITA : Jurnal Informatika Scientific Journal of Informatics Psikodimensia: Kajian Ilmiah Psikologi Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika Jurnal Sains Matematika dan Statistika BANGUN REKAPRIMA Proceeding of the Electrical Engineering Computer Science and Informatics MNJ (Malang Neurology Journal) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Jurnal Mercumatika : Jurnal Penelitian Matematika dan Pendidikan Matematika Inquiry: Jurnal Ilmiah Psikologi BAREKENG: Jurnal Ilmu Matematika dan Terapan IJEBD (International Journal Of Entrepreneurship And Business Development) JOURNAL SPORT AREA Philanthropy: Journal of Psychology MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) Evangelikal: Jurnal Teologi Injili dan Pembinaan Warga Jemaat Aptisi Transactions on Technopreneurship (ATT) Insight: Jurnal Ilmiah Psikologi Jurnal Abdi Insani Computer Science and Information Technologies Jurnal Sains dan Edukasi Sains SPEKTA (Jurnal Pengabdian Kepada Masyarakat : Teknologi dan Aplikasi) Indonesian Journal of Applied Research (IJAR) Journal of Science and Science Education Yumary: Jurnal Pengabdian kepada Masyarakat JAMBURA JOURNAL OF PROBABILITY AND STATISTICS Riset Pendidikan Bahasa dan Sastra Indonesia (Repetisi) Dinamis Jurnal HPT (Hama Penyakit Tumbuhan) Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya Jurnal Bisnis Kompetitif INJURITY: Journal of Interdisciplinary Studies Jurnal Akademik Pengabdian Masyarakat Journal of Community Empowerment ENDLESS : International Journal of Future Studies d'Cartesian: Jurnal Matematika dan Aplikasi Tesseract: International Journal of Geometry and Applied Mathematics JuTISI (Jurnal Teknik Informatika dan Sistem Informasi) El-Qisth Jurnal hukum keluarga Islam Community Impact and Society Empowerment Journal
Claim Missing Document
Check
Articles

Prediksi Laju Inflasi dengan Metode Long Short-Term Memory (LSTM) Berdasarkan Data Laju Inflasi dan Pengeluaran Kota Ternate masipupu, Frangky Aristiadi; setiawan, Adi; Susanto, Bambang
Jambura Journal of Probability and Statistics Vol 6, No 1 (2025): Jambura Journal of Probability and Statistics
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjps.v6i1.30627

Abstract

Inflation is one of the main indicators that reflect the economic stability of a region. Ternate City, as one of the cities in North Maluku Province, exhibits fluctuating inflation dynamics from year to year. This study aims to forecast the inflation rate in Ternate using the Long Short-Term Memory (LSTM) method, which is a neural network architecture well-suited for processing time series data. The data used consists of monthly Consumer Price Index (CPI) figures for Ternate from 2016 to 2023, obtained from the Central Bureau of Statistics (BPS). The LSTM model was trained using monthly CPI changes as the basis for calculating inflation. The model evaluation results show a Root Mean Square Error (RMSE) of 0.9275, Mean Absolute Error (MAE) of 0.8369, and Mean Absolute Percentage Error (MAPE) of 20.13%. These results indicate that the LSTM model performs well in forecasting inflation in Ternate City and can be utilized as a decision-support tool in regional economic planning and policymaking.   
PERBANDINGAN HASIL PERAMALAN JUMLAH WISATAWAN MANCANEGARA DENGAN METODE BOX-JENKINS DAN EXPONENTIAL SMOOTHING SARI, EMMA NOVITA; SUSANTO, BAMBANG; SETIAWAN, ADI
Jambura Journal of Probability and Statistics Vol 2, No 1 (2021): Jambura Journal Of Probability and Statistics
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjps.v2i1.9181

Abstract

Forecasting the number of tourist visits is needed by tourism businesses to provide an overview of the number of tourists in the future so that problems that might occur can be overcome properly. This study aims to compare the results of forecasting the number of foreign tourists using the Box-Jenkins and Exponential Smoothing methods. There are two data used, namely data on the number of foreign visitors visiting Indonesia from January 2008 to December 2017 (Data I) and Bali according to the entrance of Ngurah Rai Airport from January 2009 to March 2020 (Data II). The best forecast results are obtained by comparing the Root of Mean Square Error (RMSE) values. The comparison of forecasting results in Data I shows that the Holt-Winters Exponential Smoothing method is more appropriate to predict the number of foreign tourists visiting Indonesia because it has a smaller RMSE value. While, the results of forecasting periods 2 and 3 in Data II show results that are far different from the original data. After tracking, it turns out this is caused by an unexpected factor, the Covid-19 pandemic which caused the number of tourists to drop significantly during this period.
ANALYSIS OF EARTHQUAKE SEISMICITY IN MALUKU PROVINCE AND ITS SURROUNDING AREAS USING THE MAXIMUM LIKELIHOOD ESTIMATION METHOD Wattimanela, Henry Junus; Setiawan, Adi
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 3 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss3pp2179-2190

Abstract

Tectonic earthquakes are natural disasters that occur abruptly over a relatively short period, resulting from the movement of tectonic plates. The Maluku region is classified as prone to seismic activity due to its geographical location at the confluence of three tectonic plates: the Eurasian, Pacific, and Indo-Australian. This study aims to analyze the seismic activity of earthquakes in the Maluku region and its surrounding areas. The methodology employed is based on Descriptive Statistics and Maximum Likelihood Estimation. The data set was obtained from the International Seismological Centre (ISC) and comprises earthquakes occurring in the Maluku region and surrounding areas between 1970-2023. The earthquakes were selected based on the criteria of magnitude > 3.8 Mw and depth < 60 km. The research was facilitated by using various software applications, including Microsoft Excel, SPSS, Matlab, GMT, and Z-map. Descriptive statistics were employed to analyze the hypocenter and epicenter of the earthquake distribution. In contrast, the maximum likelihood method was employed to ascertain the seismicity value and earthquake return period. The findings indicate that the earthquake distribution is relatively dense, except in certain regions within the sea area. The results of the seismicity analysis demonstrate that Sub-region I exhibits the highest level of seismic activity. At the same time, the shortest return period is observed at a magnitude of 3.0 Mw, specifically within Sub-region I.
IMPROVEMENT OF LEARNING OUTCOMES OF GRADE VIII STUDENTS OF SMPN 4 SALATIGA THROUGH THE PBL MODEL WITH A CRT APPROACH Dewi, Riana; Pratama, Fika Widya; Setiawan, Adi; Deswita, Yenny
Tesseract: International Journal of Geometry and Applied Mathematics Vol. 2 No. 3 (2024): Tesseract: International Journal of Geometry and Applied Mathematics
Publisher : Nindikayla Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57254/tess.v2i3.42

Abstract

This study aims to improve the mathematics learning outcomes of class VIII G students of SMP Negeri 4 Salatiga in the material Surface Area of Flat Sided Buildings through the PBL (Problem Based Learning) model with the CRT (Culturally Responsive Teaching) approach. This research is classroom action research conducted in two cycles using the Kemmis and MC Taggart models with 4 stages namely planning, implementation, observation/observation, and reflection. The subjects of this study were class VIII G students of SMP Negeri 4 Salatiga for the 2022/2023 academic year, consisting of 30 students (15 boys and 15 girls). The technique of collecting data in this research uses observation sheets of the implementation of learning and learning achievement tests. The criteria for the success of learning outcomes in this study were increasing the class average score in each cycle and the class achieving classical mastery (many students who completed individually  85%). The results of this study showed an increase in class average scores from pre-cycle to cycle 1 (from 62.7 to 77.03) and cycle 1 to cycle 2 (from 77.03 to 84.1) and the achievement of classical mastery of 86. 67%. The conclusion obtained in this study is that the application of the PBL model with the CRT approach has succeeded in increasing the mathematics learning outcomes of class VIII G students of SMP Negeri 4 Salatiga on the material surface area of flat side shapes.
WORKSHOP PERSIAPAN PEMBELAJARAN MATEMATIKA DENGAN BANTUAN PAKET PROGRAM KOMPUTER (GEOGEBRA/R) UNTUK MGMP MATEMATIKA SMA KABUPATEN SEMARANG JAWA TENGAH Setiawan, Adi; Parhusip, Hanna Arini; Nugroho, Didit Budi; Sasongko, Leopoldus Ricky; Rudhito, Andy; Utomo, Beni; Fernandez, Aloysius Joakim
Jurnal Abdi Insani Vol 12 No 2 (2025): Jurnal Abdi Insani
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/abdiinsani.v12i2.2046

Abstract

The world is heading towards the era of Society 5.0, which requires learning Mathematics as much as possible to be easy to understand and interesting for students. Technology-based visualization, such as the use of Geogebra, can help students understand Mathematics formulas better. Therefore, teachers who are members of the High School Mathematics MGMP need to have insight into the importance of technology-based learning as a strategy to improve teaching quality. This activity aims to open teachers' insights into visualization and technology-based Mathematics learning, and help them develop creative learning modules and tools. The activity method includes four meetings consisting of webinars and workshops. The first webinar contains an introduction to the importance of visualization-based learning; the second webinar provides training in using Geogebra/R onsite or hybrid; the third webinar trains the creation of learning modules; and the fourth webinar presents the theory of writing scientific papers and using Mendeley. The results show that teachers are able to make creative and interesting lesson plans and learning modules using Geogebra/R, and motivate students to learn Mathematics independently or in groups. Some of the modules produced have been tested at school, although none of the participants have succeeded in making papers ready for publication. This activity succeeded in improving the ability of teachers to utilize technology for learning Mathematics.
Penentuan Luas Lahan dengan Metode Pendekatan Lingkaran Berbasis Google Earth dan GADM untuk Wilayah Kabupaten Semarang Windarni, Vikky Aprelia; Istiqomah, Dewi Anisa; Setiawan, Adi
Jurnal Transformatika Vol. 18 No. 2 (2021): January, 2021
Publisher : Jurusan Teknologi Informasi Universitas Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26623/transformatika.v18i2.2740

Abstract

Geographically Semarang regency as one of the regencies in Central Java province has an area of 95,020.67 hectares. In this study, the sub-district areas in Semarang regency is calculated using Circle Approach method and Karney s Polygon method using Google Earth and GADM database in the form of latitude and longitude coordinates. The results of the study show that the land area of 19 districts in Semarang regency is 11.61% more than of the reference areas based on the coordinates of the latitude and longitude on Google Earth using the circle approach method. While the percentage for the area referring to GADM data using the Karney s Polygon method is 9.71% more than of the reference areas and the difference is 13.55% more than the reference areas using Circle Approach. The results of the three comparisons show that GADM data using the Karney s Polygon method can produce better results than other methods.
Perbandingan Kinerja Metode Support Vector Regression dan Metode Regresi Linier Berganda dalam Memprediksi BMI pada Dataset ASTHMA Kurniawan, Titus Antonius David; Setiawan, Adi; Tita, Faldy
Jurnal Sains dan Edukasi Sains Vol. 8 No. 2 (2025): Jurnal Sains dan Edukasi Sains
Publisher : Faculty of Science and Mathematics, Universitas Kristen Satya Wacana, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24246/juses.v8i2p133-142

Abstract

Body Mass Index (BMI) merupakan metode untuk mengevaluasi apakah seseorang memiliki berat badan ideal, yang berperan penting dalam mengidentifikasi risiko kesehatan seperti penyakit jantung dan diabetes. Dalam penelitian ini, BMI digunakan sebagai variabel prediktor untuk menentukan kemungkinan seseorang menderita asma, yaitu penyakit kronis yang memengaruhi saluran pernapasan. Untuk memprediksi BMI berdasarkan variabel-variabel lain dalam dataset Asthma, penelitian ini membandingkan dua metode regresi, yaitu regresi linier berganda dan Support Vector Regression (SVR). Evaluasi akurasi model dilakukan menggunakan Mean Absolute Percentage Error (MAPE), yang mengukur kesalahan prediksi dalam bentuk persentase, di mana nilai MAPE yang lebih rendah menunjukkan tingkat akurasi prediksi yang lebih baik. Data uji dibagi menjadi empat skenario, yaitu 10%, 20%, 30%, dan 40% dari keseluruhan data. Hasil perhitungan menunjukkan bahwa metode regresi linier berganda menghasilkan nilai MAPE sebesar 15,42%; 15,44%; 15,51%; dan 15,63% secara berturut-turut. Sementara itu, metode SVR menghasilkan nilai MAPE sebesar 15,77%; 15,74%; 15,77%; dan 15,81%. Berdasarkan hasil tersebut, regresi linier berganda terbukti memberikan prediksi yang lebih akurat dibandingkan SVR dalam konteks dataset Asthma. Dengan demikian, regresi linier berganda lebih efektif dalam memodelkan BMI dibandingkan SVR dan dapat menjadi pertimbangan penting dalam pengembangan model prediktif untuk mendukung pengambilan keputusan terkait risiko penyakit pernapasan seperti asma.
ANALISIS REGRESI NON LINEAR PADA DATA PASIEN COVID-19 MENGGUNAKAN METODE BOOTSRAP Pradani, Wynona Adita; Setiawan, Adi; Parhusip, Hanna Arini
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 3 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (606.139 KB) | DOI: 10.30598/barekengvol15iss3pp453-466

Abstract

Dalam penelitian ini membahas tentang analisis regresi non linier dengan menggunakan data statistic perkembangan pasien positif Covid-19 di Indonesia. Penyakit Covid-19 sangat mudah berkembang penyebarannya sehingga WHO menyatakan penyakit ini sebagai pandemi, dalam penelitian ini menggunakan lima model analisis regresi non linier yaitu model Weibull 3 parameter, Gompertz 3 parameter, Log-logistic 3 parameter, Log-Logistic 4 parameter dan model Logistic 3 parameter. Analisis yang terbaik dalam memprediksi yaitu Log-logistic 3 parameter dengan nilai AIC = 6527.434 dan RMSE = 6836.79, dan diperoleh nilai parameter , dan A= 19477000, sehingga pengestimasian parameter dengan menggunakan metode Bootstrap B = 10000 dengan interval kepercayaan 95% untuk parameter , dan A berturut-turut adalah maka diperoleh nilai rata-rata estimas Bootstrap , dan . Pada data prediksi pasien yang positif Covid-19 akan dibandingkan dengan data pengamatan, dari hasil perbandingan diperoleh nilai MAPE = 9%, sehingga dapat dikatakan pemodelan Log-logistic 3 parameter sangat baik dalam memprediksi.
LATENT DIRICHLET ALLOCATION (LDA) METHOD ANALYSIS ABOUT COVID-19 VACCINE ON TWITTER SOCIAL MEDIA Haay, Happy Alyzhya; Setiawan, Adi
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 1 (2022): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (788.349 KB) | DOI: 10.30598/barekengvol16iss1pp189-196

Abstract

Twitter is one social media that often provides much information for its users, one of which is information regarding the COVID-19 vaccination. This study aimed to explore and find out what topics are often discussed on Twitter social media. One of which is the topic of COVID-19 vaccination using the Latent Dirichlet Allocation (LDA) method and analysis of the frequency of keywords that often appear with this topic. The Tweet data used in this study was taken from Twitter users worldwide in November 2021. In this study, the results of sentiment analysis were obtained from the tweet data taken, which was divided into positive sentiment and negative sentiment, namely "vaccination" with 40 words and "'Covid19" with 35 words
CALCULATION OF CENTRAL JAVA PROVINCE REGION AREA USING SHOELACE FORMULA BASED ON THE GADM DATABASE Setiawan, Adi; Sediyono, Eko; Mahatma, Tundjung
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 2 (2022): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (511.692 KB) | DOI: 10.30598/barekengvol16iss2pp597-606

Abstract

This study proposes the use of the shoelace formula to determine the area of the regencies and towns/cities in the province of Central Java, which is based on the boundaries of the cities, regencies, (sub-) districts, and villages using the database from the GADM (Global Administrative Area). The results obtained are then compared with the Karney polygon method. With the shoelace formula, the area of Central Java province is 34365.40 km2 (4.77% wider than the reference area), while the Karney polygon method yields 34379.48 km2 (4.81% wider than the reference area). The area calculated using the boundaries of sub-districts is closer to the reference area if compared to using the boundaries of the regencies/cities and of villages. MdAPE values of 6.46 % and 6.54 % are obtained using the shoelace formula and the Karney polygon method respectively.
Co-Authors Abdul Latief Abadi Abesha, Muhammad Bagas ADELIA, PUTRI Adella Septiana Mugirahayu Aditya Nugraha Putra, Aditya Nugraha Adril, Adril Agatha, Titania Puela Agung Sugeng Widodo Agustiningsih, Maulina Al Jauhary, Muhammad Rifqi Aldian Umbu Tamu Ama Aldian Umbu Tamu Ama Alfida Tegar Nurani Alicia Anggelia Lumbantoruan Alkhinaya, Imelzsa ALOYSIUS JOAKIM FERNANDEZ Andhika, Yosi Arbi, Mokhram Ari Ariani, Dwi Setya Arum, Naiya Giska Fauzhia Sekar Atiek Iriany Atina Rahmatalia Ayu Pratiwi, Ayu AYU WULANDARI Bambang Susanto Baskoro Arie Nugroho Bayu Wijayanto Beni Utomo Christiana Hari Soetjiningsih Christina Maya Indah Susilowati Cintika, Sara Famelia D. B. Nugroho, D. B. Daivi Wardani, Daivi Danang Ariyanto Delsylia Tresnawaty Ufi Denny Indrajaya Denny Indrajaya Deswita, Yenny Dewi Anisa Istiqomah Dewi Lukitasari Diah Wulansari Hudaya, Diah Wulansari Didit Budi Nugroho Djoko Hartanto E. D. Saputri, E. D. Eko Sediyono Elok Waziiroh Elsa Septyana Endang Sulistyaningsih Faldy Tita Fika Widya Pratama Florentina Tatrin Kurniati Gustina, Devi Haay, Happy Alyzhya Hamsani Hamsani, Hamsani Hanna Arini Parhusip Hari Slamet Trianto Hari Slamet Trianto Hariyanto Hariyanto Hartiningsih, Tri Haryadi, Andri Henderi . Henrizal, Henrizal Henry Junus Wattimanela Hidayat, Mario Ignatius Agus Supriyono Ilham Hizbuloh Imansyah, Salmaa R. N Irisa Trianti Irwan Sembiring Iwan Setiawan Iwan Setyawan Joko Siswanto JT Lobby Loekmono Kasmadi Kasmadi Keo, Jitro Jemryes Kurniawan, Johanes Dian Kurniawan, Titus Antonius David Larassati, Dian Sukma Leipary, Harfely Leonardo Refialy Leonardo Refialy, Leonardo Leopoldus Ricky Sasongko Lilik Linawati Lindin Anderson Litra Diantara Luqman Qurata Aini Lydia Soepriyani Fallo masipupu, Frangky Aristiadi Meydelina, Gloria Migunani Migunani Mitha Febby R. Donggori Mitha Febby R. Donggori Mochtar Luthfi Rayes Modjo, Marchella Ellena Mohammad Ridwan Mukti, Audy Desaela Junia Munika, Rani Mustafa Kamal Nafisah Riskya Hasna Nasoetion, Panisean Nasrudienullah, Muhammad Ikhsan Ninda Lutfiani Nizwan Zukhri Nugraha, Irfan Nur Priya Nurul Islami, Nurul Olivia Rumahpasal Pamungkas, Bayu Aji Pane, Pina Andriani Pariama, Aprillia Mauren Pirmansyah Pirmansyah Pradani, Wynona Adita Priatna , Wowon Pronika, Yeni Purbaratri, Winny Purwanto Purwoko, Agus Putra, Reza Qurotul Aini Rachayu, Laras Andriani Rachel Wulan Nirmalasari Wijaya Reniati Reniati Riana Dewi Ridlo, Mahmuddin Riza, Sativandi Rizqon Hasibuan Romauli Basaria Roy Rudolf Huizen Rudhito, Andy Salomina Patty Saputra, Muhammad Dio SARI, EMMA NOVITA Sari, Fariezta Sayuti, M. Setivani, Febi Sri Suwartiningsih Sulistio Sulistio Suryasatriya Trihandaru Sutarto Wijono Syamsul Arifin Syib`'li, Muhammad Akhid Tamaela, Jemaictry Theo Sarita, Fetriks Theopillus J. H. Wellem Tri Wahyuningsih Tundjung Mahatma Uli, Desti Monika Untung Rahardja Untung Rahardja Vikky Aprelia Windarni Vikky Aprelia Windarni Vincentia Pawestri Wahyuni Kristinawati Waney, Natalia Christy Wattimanela, Henry Junus Wibowo, Mars Caroline Wiguna, Edo Wijaya, Maruf Ajisaka Wijayanti, Yunita Puput Windarni, Vikky Aprelia Wisnu Anendya Sekti Yanti Sariasih Yenusi, Yuni naomi Yulius Yusak Ranimpi Yuono, Sukma Setyo Zuliani, Nopita zurman, zurman