Claim Missing Document
Check
Articles

Sustainable Cultural Tourism Development Strategy in Karuhun Eco Park Village, Sumedang Regency, West Java, Indonesia Ratnasari, Dewi; Tiswaya, Waway; Riaman, Riaman; Sukono, Sukono; Hidayana, Rizki Apriva; Laksito, Grida Saktian
International Journal of Business, Economics, and Social Development Vol. 6 No. 3 (2025)
Publisher : Rescollacom (Research Collaborations Community)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijbesd.v6i3.989

Abstract

The development of cultural arts tourism as a sustainable tourism destination is a priority considering the features and nature of these locations, which highlight a number of elements such the local economy, environment, culture, preservation, and community empowerment. One of the cultural tourism areas in Indonesia, to be precise the province of West Java, namely Kampung Ladang in Sumedang Regency which is located at the top of Pasir Peti hill - Marga Laksana Sumedang Village. Kampung Ladang is one of Sumedang's cultural tourism centres by collaborating with the local community to maintain and preserve traditional Sundanese culture and procedures, especially Sumedang culture and traditions. This research uses qualitative methods and uses IFAS / EFAS and SWOT Analysis which aims to identify the potentials developed by Kampung Ladang with data collection carried out by observation, indepth interviews, and documentaries. The results of this study indicate that Kampung Ladang has three potentials that are ready to be developed in attracting tourists to visit such as potentials that need to be improved, namely attractions and activities, external supporting potentials, namely accessibility infrastructure consisting of information boards and other supporting facilities, and potentials that are not yet available, namely the provision of tour packages through marketing and promotion strategies that can attract tourists to visit and can develop community-based sustainable tourism that is community-centred to improve community welfare, besides that government support is needed in carrying out development and maintenance. In order to meet the needs of travellers, businesses, the environment, and tourism management communities, among other stakeholders, sustainable tourism management is a type of tourism management that will play a significant role in both the present and the future economic and social conditions.
Systematic Literature Review: Optimal Stopping and Investment Optimization for Bankruptcy Risk Management in Sharia Insurance Okta Yohandoko, Setyo Luthfi; Chaerani, Diah; Sukono, F
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.35523

Abstract

The increasing demand for Sharia-compliant financial services in Muslim-majority countries such as Indonesia has driven the rapid development of Sharia insurance (Takaful). Despite its growth, the Sharia insurance sector faces significant challenges in managing investment portfolios and mitigating bankruptcy risks. Addressing these challenges requires a comprehensive understanding of the existing mathematical and financial models configured according to Islamic principles. Several studies have introduced stochastic approaches to model surplus processes, investment returns, and risk probabilities in insurance operations. Among these, the Cramér–Lundberg model has been widely used to estimate surplus dynamics and bankruptcy risks, while the Vasicek model provides a stochastic framework for modeling investment returns. Quadratic programming has also been applied to optimize asset allocation under specific constraints. However, these methodologies have typically been explored in isolation, which limits their ability to provide an integrated and effective framework for simultaneous bankruptcy risk mitigation and Sharia-compliant investment optimization. This methodological gap constrains the advancement of comprehensive, practically applicable, and theoretically sound solutions that are specifically designed to address the distinctive operational characteristics of Shariainsurance. The objective of this systematic review of the literature is to synthesize and critically analyze the methods used in previous research and to explore how they can be systematically integrated to form a comprehensive risk and investment management framework for Sharia insurance. The review identifies the strengths, limitations, and potential for combining optimal stopping theory, stochastic surplus modeling, and investment optimization to support robust financial decision making. This review contributes by offering a structured research agenda for the development of integrated models that simultaneously address the complexities of bankruptcy risk and Sharia-compliant investment strategies. Furthermore, this study provides valuable information for academics and practitioners seeking to improve the financial sustainability of the Islamic Insurance industry.
Numerical Solution of the Time-Fractional Black-Scholes Equation and Its Application to European Option Pricing Dihna, Elza Rahma; Rusyaman, Endang; Sukono, Sukono
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.35248

Abstract

The classical Black-Scholes model is widely used in option pricing but relies on idealized assumptions such as constant volatility and memoryless market dynamics, which limit its accuracy in capturing real-world financial behavior. To overcome these limitations, the time-fractional Black-Scholes model incorporates a fractional-order derivative—specifically the Caputo derivative—which introduces memory effects and accommodates time-varying volatility. This study focuses on numerically solving the time-fractional Black-Scholes equation using the finite difference method (FDM) and applying the results to the pricing of European call options. The model is discretized using an implicit finite difference scheme to ensure stability and accuracy over the time domain. Numerical simulations are conducted for various values of the fractional order α, illustrating that the option price is sensitive to the fractional parameter. Lower values of α tend to increase option prices, highlighting the influence of memory effects on pricing behavior. The results confirm that the finite difference method is an effective numerical tool for solving fractional partial differential equations and demonstrate that the fractional Black-Scholes model offers improved flexibility and realism in option  valuation, particularly in markets characterized by irregular volatility and non-Markovian features.
Stock Portfolio Optimization of IDX30 using Agglomerative Hierarchical Clustering and Ant Colony Optimization Algorithm Firdaus, Muhammad Rayhan; Subartini, Betty; Sukono, Sukono
International Journal of Global Operations Research Vol. 6 No. 3 (2025): International Journal of Global Operations Research (IJGOR), August 2025
Publisher : iora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47194/ijgor.v6i3.394

Abstract

The stock market offers high profit opportunities but also entails significant risks, making portfolio optimization essential to help investors manage risk and maximize returns. This study aims to cluster IDX30 stocks to form a more diversified portfolio, determine the optimal stock weights, and evaluate portfolio performance. The method employed is Agglomerative Hierarchical Clustering (AHC) with Ward linkage for clustering stocks based on financial ratios, with the silhouette score used to evaluate cluster quality. Subsequently, the Ant Colony Optimization (ACO) algorithm is applied to optimize stock weights in the portfolio based on the clustering results. The findings indicate that the best portfolio is obtained in clusters 5 and 6, with a maximum fitness value of 0.064555 and a portfolio return of 0.000814. Portfolio performance evaluation using the Sharpe ratio yields a value of 0.044767 for both clusters, indicating that the resulting portfolios are efficient. This research is expected to contribute to the development of more accurate and practical data-driven investment strategies for investors.
COMPARATIVE ANALYSIS OF TIME SERIES FORECASTING MODELS USING ARIMA AND NEURAL NETWORK AUTOREGRESSION METHODS Melina, Melina; Sukono, Sukono; Napitupulu, Herlina; Mohamed, Norizan; Chrisnanto, Yulison Herry; Hadiana, Asep ID; Kusumaningtyas, Valentina Adimurti; Nabilla, Ulya
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 4 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss4pp2563-2576

Abstract

Gold price fluctuations have a significant impact because gold is a haven asset. When financial markets are volatile, investors tend to turn to safer instruments such as gold, so gold price forecasting becomes important in economic uncertainty. The novelty of this research is the comparative analysis of time series forecasting models using ARIMA and the NNAR methods to predict gold price movements specifically applied to gold price data with non-stationary and non-linear characteristics. The aim is to identify the strengths and limitations of ARIMA and NNAR on such data. ARIMA can only be applied to time series data that are already stationary or have been converted to stationary form through differentiation. However, ARIMA may struggle to capture complex non-linear patterns in non-stationary data. Instead, NNAR can handle non-stationary data more effectively by modeling the complex non-linear relationships between input and output variables. In the NNAR model, the lag values of the time series are used as input variables for the neural network. The dataset used is the closing price of gold with 1449 periods from January 2, 2018, to October 5, 2023. The augmented Dickey-Fuller test dataset obtained a p-value = 0.6746, meaning the data is not stationary. The ARIMA(1, 1, 1) model was selected as the gold price forecasting model and outperformed other candidate ARIMA models based on parameter identification and model diagnosis tests. Model performance is evaluated based on the RMSE and MAE values. In this study, the ARIMA(1, 1, 1) model obtained RMSE = 16.20431 and MAE = 11.13958. The NNAR(1, 10) model produces RMSE = 16.10002 and MAE = 11.09360. Based on the RMSE and MAE values, the NNAR(1, 10) model produces better accuracy than the ARIMA(1, 1, 1) model.
DETERMINATION OF INSURANCE PREMIUMS FOR CHILI PLANTATION USING THE BLACK-SCHOLES MODEL WITH CLAYTON COPULA APPROACH Sutisna, Sarah; Sukono, Sukono; Napitupulu, Herlina
MEDIA STATISTIKA Vol 18, No 1 (2025): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/medstat.18.1.13-24

Abstract

Agriculture is a vulnerable sector to the risk of crop damage due to climate change and other environmental factors. One source of risk in agriculture is rainfall, which significantly affects productivity and farmers’ income. Traditional insurance premium calculations often rely on assumptions of normal distribution and linear dependency, which may not accurately capture the complex and non-linear relationships between climatic and agricultural variables. This research presents a novel contribution to agricultural risk management by applying the Clayton Copula to model the dependency structure between rainfall and chili crop production output in the context of crop insurance pricing. The estimation of Copula parameters was conducted using Maximum Likelihood Estimation, yielding a parameter θ value of -0.1252, which indicates the dependency structure between the variables. The predictive accuracy of the Copula Clayton model was evaluated using the Mean Absolute Error, with a result of 0.01291, demonstrating strong relevance in describing the dependency between precipitation and yield. Furthermore, the research integrates the Copula-based rainfall modeling with the Black-Scholes model for determining insurance premiums. The findings reveal that premium prices depend on rainfall index values, where higher rainfall percentages correspond to higher premium costs.
A Systematic Literature Review on Mean-CVaR Based Financial Asset Portfolio Weight Allocation Using K-Means Clustering Wahid, Alim Jaizul; Riaman, Riaman; Sukono, Sukono
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.36590

Abstract

This study aims to identify and analyze the application of the Mean-Conditional Value-at-Risk (Mean-CVaR) model in the allocation of financial asset portfolio weights combined with the K-Means Clustering algorithm. The Systematic Literature Review (SLR) method is used with the PRISMA protocol through the stages of identification, screening, eligibility, and inclusion. Data is obtained from Scopus, ScienceDirect, and Dimensions databases, then selected up to six relevant primary articles. The results of the study indicate that CVaR is the dominant risk measure in portfolio optimization, while K-Means Clustering serves as a method of grouping assets to increase diversification. The optimization methods used include Genetic Algorithm, Particle Swarm Optimization, Teaching Learning-Based Optimization, and Stochastic Programming. However, direct integration between Mean-CVaR and K-Means within a portfolio weight allocation framework is still rare. This research emphasizes the need to develop a hybrid model that combines both approaches in an integrated manner, applied to a multi-asset portfolio, and validated under various market conditions to produce an optimal, adaptive, and resilient investment strategy against extreme risks.
Investment Portfolio Optimization in Renewable Energy Stocks in Indonesia Using Mean-Variance Risk Aversion Model Vimelia, Willen; Riaman, Riaman; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 5 No. 1 (2024)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v5i1.601

Abstract

Climate change is a phenomenon that has been occurring for quite some time. However, the increasingly felt impacts of climate change necessitate human action to mitigate these effects. One way to address this issue is by transitioning from conventional or non-renewable energy sources to renewable energy. This step undoubtedly has implications for various aspects, such as investments. Naturally, investors are beginning to turn their attention to the field of renewable energy as a new target. Investments are inherently associated with risks and returns One approach to maximizing returns is through portfolio optimization. One well-known method in portfolio optimization is the Mean-Variance method, also known as the Markowitz method, as it was first introduced by Harry Markowitz. In this research, an optimal portfolio is generated with weights of 0.1470 for ADRO; 0.1939 for MEDC; 0.2143 for ITMG and 0.4449 for RAJA. With this composition of optimal portfolio weights, the expected return is obtained at 0.002252, and the return variance is 0.000496.
Investment Portfolio Optimization In Infrastructure Stocks Using The Mean-VaR Risk Tolerance Model Yasmin, Arla Aglia; Riaman, Riaman; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 5 No. 1 (2024)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v5i1.602

Abstract

Infrastructure a crucial role in economic development and the achievement of Sustainable Development Goals (SDGs), with investment being a key activity supporting this. Investment involves the allocation of assets with the expectation of gaining profit with minimal risk, making the selection of optimal investment portfolios crucial for investors. Therefore, the aim of this research is to identify the optimal portfolio in infrastructure stocks using the Mean-VaR model. Through portfolio analysis, this study addresses two main issues: determining the optimal allocation for each infrastructure stock and formulating an optimal stock investment portfolio while minimizing risk and maximizing return. The methodology employed in this research is the Mean-VaR approach, which combines the advantages of Value at Risk (VaR) in risk measurement with consideration of return expectations. The findings indicate that eight infrastructure stocks meet the criteria for forming an optimal portfolio. The proportion of each stock in the optimal portfolio is as follows: ISAT (2.74%), TLKM (33.894%), JSMR (3.343%), BALI (0.102%), IPCC (5.044%), KEEN (14.792%), PTPW (25.863%), and AKRA (14.219%). The results of this study can serve as a foundation for better investment decision-making.
Analysis Volatility Spillover of Stock Index in ASEAN (Case Study: Indonesia, Singapore, Malaysia) Labitta, Kirana Fara; Susanti, Dwi; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 5 No. 1 (2024)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v5i1.603

Abstract

Every country has its own income, including ASEAN countries such as Indonesia, Singapore, and Malaysia. One source of national income can come from stocks, which can be measured by the stock index. The income of each country depends on each other and can be influenced by a phenomenon, such as the Covid-19 pandemic. The Covid-19 pandemic can also cause volatility spillover. This research aims to analyze volatility spillover in ASEAN countries (Indonesia, Singapore, and Malaysia) before and during Covid-19 by looking at the effects of asymmetric volatility. Volatility spillover testing in this study uses the Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH) model, starting with creating a time series model and then modeling the residuals from that model, then finding the estimated parameter results of asymmetric volatility effects. The results of this study indicate that during the period before Covid-19, there is volatility spillover for Indonesia and Malaysia. Then, during the Covid-19 period, there is volatility spillover for Indonesia and Malaysia, for Indonesia and Singapore, and for Singapore and Malaysia.
Co-Authors Abdul Talib Bon Abiodun Ezekiel Owoyemi Achmad Bachrudin Adhitya Ronnie Effendie, Adhitya Ronnie Agung Prabowo Agung Prabowo Agung Prabowo Agung, Moch Panji Agus Santoso Agus Santoso Agus Sugandha Agustini Tripena Br Surbakti Aisyah Nurul Aini Amalia, Hana Safrina Amitarwati, Diah Paramita Apipah Jahira, Juwita Asep K Supriatna Asep Saepulrohman Asep Solih Awalluddin, Asep Solih Asri Rula Hanifah Audina, Maudy Afifah Aulia Kirana Aziza Ayu Nurjannah Bakti Siregar Banowati, Puspa Dwi Ayu Basuki , Basuki Basuki Bayyinah, Ayyinah Nur Betty Subartini Bimasota Aji Pamungkas bin Mamat, Mustafa Budi Pratikno Candra Budi Wijaya Carissa, Katherine Liora Dara Selvi Mariani Dedy Rosadi Dedy Rosadi DEWI RATNASARI Dewi Ratnasari Dhika Surya Pangestu Diah Chaerani Diah Paramita Amitarwati Diana Ekanurnia Dianti, Estu Putri Dihna, Elza Rahma Dini Aulia Dwi Susanti Dwi Susanti Dwi Susanti Dwi Susanti Dwi Susanti Eddy Djauhari Edi Kurniadi Ema Carnia Emah Suryamah, Emah Eman Lesmana Endang Rusyaman Endang Soeryana Hasbullah Fasa, Rayyan Al Muddatstsir Febrianty, Popy Firdaus, Muhammad Rayhan Forman Ivana S. S. S. Ghazali, Puspa Liza Grida Saktian Laksito Hadiana, Asep Id Haq, Fadiah Hasna Nadiatul Hasbullah, Soeryana Hasriati Hasriati Hazelino Rafi Pradaswara Herlina Napitupulu Herlina Napitupulu Hidayana, Rizki Apriva Ibrahim M Sulaiman Ihda Hasbiyati Iin Irianingsih Ira Sumiati Ismail Bin Mohd Januaviani, Trisha Magdalena Adelheid Jumadil Saputra Jumadil Saputra Kahar, Ramadhina Hardiva kalfin Kalfin Kalfin, Kalfin Khairi, M. Ihsan Kusumaningtyas, Valentina Adimurti Labitta, Kirana Fara Laksito, Grida Saktian M. Ihsan Khairi Maraya, Nisrina Salsabila Maulana Malik Ma’mur, Lutfi Praditia Melina Melina Melina Melina, Melina Mochamad Suyudi Mohamad Nurdin, Dadang Muhammad Arief Budiman Muhammad Iqbal Al-Banna Ismail Mustafa Mamat Mustafa Mamat Mustafa Mamat Nabilla, Ulya Nahda Nabiilah Nita Rulianah Noriszura Ismail Norizan Mohamed Novianti, Saqila Novieyanti, Lienda Novinta S, Fujika Novitasari, Ela Nugraha, Dwita Safira Nur Mahmudah Nurdyah, Himda Anataya Nurfadhlina Abdul Halim Nurul Fadilah Okta Yohandoko, Setyo Luthfi Pardede, Ester Priyatna, Yayat Puspa Liza Ghazali Putri, Aulya Putri, Linda Damayanti Putri, Sherina Anugerah Raharjanti, Amalia Rahman, Rezki Aulia Ramdhania, Tya Shafa Ratih Kusumadewi Riadi, Nadia Putri Riaman Riaman Riaman Riaman Riaman Riaman Riaman Riaman, Riaman Rini Cahyandari Riza Adrian Ibrahim Rosadi, D. - Rulianah, Nita Salamiah, Mia Salih, Yasir Sampath, Sivaperumal Saputra, Jumadil Sianturi, Sri Novi Elizabeth Sisilia Sylviani Siti Sabariah Abas Soeryana Hasbullah Sri Purwani Stanley Pandu Dewanto Subanar - Subanar . Subanar Subanar Subiyanto Subiyanto Sudradjat Supian Suhaimi, Nurnisaa binti Abdullah Sulastri, S Sumiati, Ira Supian, Sudradjat Suroto Suroto Susanto, Sunarta Sutiono Mahdi Sutisna, Sarah Suyudi, Mochamad Suyudi, Mochammad T.P Nababan Tampubolon, Carlos Naek Tua Tika Fauzia Tiswaya, Waway Titi Purwandari Titin Herawati Umar A Omesa Valentina Adimurti Kusumaningtyas Verrany, Maria Jatu Vimelia, Willen Wahid, Alim Jaizul Wan Muhamad Amir W Ahmad Widyani, Azizah Rini Wiliya Wiliya Yasir Salih Yasmin, Arla Aglia Yhenis Apriliana Yulianus Brahmantyo Yulison Herry Chrisnanto Yuningsih, Siti Hadiaty Yuyun Hidayat Zahra, Ami Emelia Putri Zinedine Amalia Noor Mauludy Reihan