Claim Missing Document
Check
Articles

Optimal Portfolio Using Roy’s Safety-First Method on Primary Consumer Goods Sector Stocks Dianti, Estu Putri; Riaman, Riaman; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 5 No. 1 (2024)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v5i1.641

Abstract

Before carrying out investment activities, investors need to form an optimal investment portfolio. This study aims to form an optimal portfolio in primary consumer goods sector stocks that sell the basic needs of the community so that stocks in the sector tend to be stable. The method used in forming the optimal portfolio is Roy's Safety-first method. The portfolio formed produces 6 combinations of stocks consisting of WIIM, DSNG, MRAT, CAMP, SIMP, and MBTO stocks respectively with a proportion of funds of 44.05%, 16.38%, 18.61%, 15.06%, 4.32%, and 1.59% with an expected return portfolio of 3.10% and a portfolio risk of 1.65%.
Prediction of Motor Vehicle Insurance Claims Using ARMA-GARCH and ARIMA-GARCH Models Maraya, Nisrina Salsabila; Susanti, Dwi; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 5 No. 2 (2024)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v5i2.672

Abstract

Motorized vehicles are one of the means of transportation used by Indonesian people. As of 2021, the Central Statistics Agency (BPS) recorded the growth of motorized vehicles in Indonesia reaching 141,992,573 vehicles. Lack of control over the number of motorized vehicles results in losses for various parties, such as accidents, damage and other unwanted losses. The size of insurance claims has the potential to fluctuate, because it is influenced by several factors, such as policy changes, market conditions and economic conditions. This research aims to predict the size of motor vehicle insurance claims using the ARMA-GARCH model which is used to predict the size of vehicle insurance claims by dealing with non-stationarity and heteroscedasticity in time series data. Based on research, the best model obtained is the ARMA(3,3)-GARCH(1,0) model which produces nine significant parameters. Meanwhile, based on the MAPE value, it shows that the ARMA(3,3)-GARCH(1,0) model is quite accurate. The results of this research can be taken into consideration in predicting the size of insurance claims in the future.
Based Stock Valuation Analysis on Fuzzy Logic for Investment Selection (Case Study: PT. XL Axiata Tbk. and PT. Telkom Indonesia Tbk.) Audina, Maudy Afifah; Susanti, Dwi; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 5 No. 2 (2024)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v5i2.673

Abstract

The stock value of a company fluctuates with capital market conditions, requiring investors to consider various factors for precise investment decisions. Stock valuation determines the fair price of a company's stock, guiding buying and selling transactions. This research uses Discounted Cash Flow (DCF), Price to Earnings (P/E), and Enterprise Value to EBITDA (EV/EBITDA) to ascertain fair stock prices, integrating results with Mamdani fuzzy logic to determine investment weights. The result of this research is that both EXCL and TLKM hold significant weight in the investment portfolio with TLKM has slightly higher stock weight than EXCL. This suggests TLKM offers more potential for profitable future investments. Investors can use these results in portfolio management for investment selection
Forecasting Indonesian Stock Index Using ARMA-GARCH Model Susanti, Dwi; Labitta, Kirana Fara; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 5 No. 2 (2024)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v5i2.686

Abstract

The stock market is an institution that provides a facility for buying and selling stocks. Covid-19 is an issue that has affected the stock markets of many countries, including Indonesia. Due to the pandemic, the condition of stocks before and during Covid-19 is certainly different. Stocks can be measured using stock indices. To predict future stock conditions, it is necessary to forecast the stock index. This research aims to predict the Indonesian stock index in the before and during Covid-19 period, using ARMA-GARCH time series model. According to the results obtained for before Covid-19 data, the best predictive model is the ARMA(0,2)-GARCH(1,0), and for the data during Covid-19, it is ARMA(3,3)-GARCH(3,3). Since the MAE is close to zero, it indicates that the model is quite accurate. These findings can help investors make better investment decisions in the future.
Actuarial Pension Fund Using the Projected Unit Credit (PUC) Method: Case Study at PT Taspen Cirebon Branch Office Amalia, Hana Safrina; Subartini, Betty; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 5 No. 3 (2024)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v5i3.745

Abstract

The pension fund program is a program held by the government to ensure the welfare of Civil Servants (PNS) in retirement as old-age security. The pension program for civil servants is managed by a pension fund, PT Taspen (Persero). Actuarial calculations of pension funds need to be carried out to determine the amount of normal contributions and actuarial liabilities that must be paid by pension plan participants and companies. The actuarial calculation of pension funds used by PT Taspen in managing civil servant pension funds is the Accrued Benefit Cost which determines in advance the benefits that will be obtained by participants. The Projected Unit Credit (PUC) method is one part of the Accrued Benefit Cost. This study aims to determine normal contributions and actuarial liabilities using the Projected Unit Credit (PUC) method for civil servant pension program participants of PT Taspen (Persero) Cirebon Branch Office. The calculation results show that the PUC method provides a more accurate calculation of the estimated normal contributions and actuarial liabilities of the company. This study is expected to be a reference for other companies in managing employee pension funds using an actuarial approach.
Mean-Variance Optimal Portfolio Selection with Risk Aversion on Transportation and Logistics Sector Stocks Based on Multi-Criteria Decision-Making Putri, Aulya; Riaman, Riaman; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 6 No. 1 (2025)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v6i1.895

Abstract

The importance of the transportation and logistics sector to a country's economy, coupled with the growth of this sector in Indonesia, requires investment support for this sector to continue to grow. Therefore, stocks in the transportation and logistics sector are attractive for investment portfolio consideration. The optimal portfolio selection is to minimize the risk with the expected return. In the formation of an investment portfolio, the problem is how to determine the weight of capital allocation in order to get the maximum return while still considering the risk in each stock, by considering several criteria in decision making. This study was conducted to determine the best stock selection in the transportation and logistics sector listed on the Indonesia Stock Exchange, and determine the optimal weight in the investment portfolio. The method used is Multi-Criteria Decision Making (MCDM), namely Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) using 15 financial metrics as relevant criteria in stock selection. Furthermore, to determine the allocation weight to form an optimal stock portfolio using the Mean-Variance model with Risk Aversion. The stocks analyzed were 28 stocks in the transportation and logistics sector. The results of research based on MCDM selected 9 stocks, namely MITI, BIRD, HATM, TMAS, JAYA, PPGL, BPTR, ASSA, and RCCC. However, TMAS, PPGL, and BPTR stocks are not included in portfolio formation because they have a negative average return. Based on the optimization results, the allocation weights of the 6 stocks included in the optimal portfolio are BIRD (37.7%), JAYA (24.6%), MITI (12.9%), HATM (9.9%), ASSA (7.5%), and RCCC (7.4%). The results of this study are expected to be a consideration in making investment decisions.
Comparison of Stock Price Forecasting with ARIMA and Backpropagation Neural Network (Case Study: Telkom Indonesia) Carissa, Katherine Liora; Subartini, Betty; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 6 No. 1 (2025)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v6i1.896

Abstract

The growth of capital market investors in Indonesia is increasing every year. The most popular investment instrument is stocks. One of the stocks on the Indonesia Stock Exchange (IDX) is the Telkom Indonesia (TLKM). Through stock investment, investors can make a profit by utilizing stock prices in the market. However, stock price fluctuations are uncertain. Therefore, modeling is needed to be able to predict stock prices more accurately. The purpose of this study was to find an appropriate time series model and Neural Network model architecture, and to measure the accuracy of the two models in predicting future stock prices of TLKM. The study was conducted using the Autoregressive Integrated Moving Average (ARIMA) model and Backpropagation Neural Network (BPNN). For comparison, the Mean Absolute Percentage Error (MAPE) method was used. The data used in both models were the stock prices of Telkom Indonesia (TLKM) from September 1, 2023 to September 30, 2024. The result shows that the best ARIMA model, selected based on the least Akaike Information Criterion (AIC) value, is ARIMA(0,1,3) with a MAPE value of 1.20%. Meanwhile, the best BPNN model selected from the smallest testing Mean Squared Error (MSE) value, is BPNN(1,3,1) with a MAPE value of 1.17%. Among those two models, the BPNN model is more accurate because it has less MAPE value compared to the ARIMA one. The results of this research can be considered in forecasting TLKM stock price in the future.
Analysis of the French Five Factors Fama Model on Excess Return of Stocks Listed on IDXBUMN20 for the Period 2020-2023 Putri, Linda Damayanti; Riaman, Riaman; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 6 No. 2 (2025)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v6i2.966

Abstract

Excess return is the difference between the rate of return earned on an investment and the rate of risk-free return in a given period. This shows how much return is received because they are willing to take risks in investing. This study aims to analyze the Fama French Five Factor model on the excess return of stocks listed in IDXBUMN20 2020-2023 period. The factors in the model are market factors, size factors, book to market ratio, profitability, and investment. The population in this study amounted to 20 companies registered in the IDXBUMN20 index, the sample selection in this study used the purposive sampling method and a sample of 12 companies was obtained. The data used in the study are close price, number of shares outstanding, Bank Indonesia (BI) interest rate, and company financial statements. The analysis method used was the Common Effect Model (CEM) panel data regression analysis. Based on hypothesis testing, market factors were obtained which only had an effect on excess returns. This factor shows the influence of the ups and downs of market performance on the price of a stock.
Investment Portfolio Optimization Using Genetic Algorithm on Infrastructure Sector Stocks Based on the Single Index Model Bayyinah, Ayyinah Nur; Riaman, Riaman; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 6 No. 2 (2025)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v6i2.977

Abstract

Investment is a strategic step in managing assets to gain profits in the future by allocating some funds in the present. However, behind the promising potential returns, investment also contains risks that cannot be ignored. One way to reduce the level of risk in investing is to implement a portfolio diversification strategy, which is to form an optimal portfolio by allocating investments to various stocks. This study aims to identify the stocks that form the optimal portfolio, determine the optimal weight of each stock, and calculate the expected return and risk of the portfolio. The portfolio optimization process is carried out using Genetic Algorithm, with the calculation of expected return and risk using the Single Index Model (SIM) approach. The data used includes data on stocks in the infrastructure sector for the period July 1, 2023 to June 30, 2024. The results showed that there were six stocks selected in forming the optimal portfolio with the weight of each stock: PGEO 15.0023%, ISAT 32.1522%, GMFI 4.7822%, EXCL 15.3236%, JSMR 29.7379, and OASA 3.0018%. This optimal portfolio provides an expected return of 0.1167% with a portfolio risk of 0.0152%.
Comparison of Stock Mutual Fund Price Forecasting Results Using ARIMA and Neural Network Autoregressive Model Sianturi, Sri Novi Elizabeth; Subartini, Betty; Sukono, Sukono
International Journal of Quantitative Research and Modeling Vol. 6 No. 2 (2025)
Publisher : Research Collaboration Community (RCC)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46336/ijqrm.v6i2.1001

Abstract

Stock mutual funds gained popularity among the public as an investment alternative due to the convenience they offer, especially for beginner investors who have limited time and investment knowledge. Compared to money market and bond mutual funds, these mutual funds offer higher potential returns but also come with higher risks due to value fluctuations, so forecasting stock mutual fund prices is essential to minimize losses. Since stock mutual fund prices is time series data, this research employs two forecasting models such as Autoregressive Integrated Moving Average (ARIMA) and Neural Network Autoregressive (NNAR). The objective of this research is to determine the best-performing model between ARIMA and NNAR, and compare their forecasting accuracy using the Mean Absolute Percentage Error (MAPE). The data used consists of daily closing prices of stock mutual funds from March 1, 2022, to March 31, 2025, with the criteria that the selected issuers have been operating for more than five years. The results of this research show that the best ARIMA and NNAR for the RNCN are ARIMA([1],1,0) and NNAR(2,2); for TRAM are ARIMA(0,1,[1]) and NNAR(4,1); for SCHRP are ARIMA(0,1,[1]) and NNAR(4,2); for MICB are ARIMA([1],1,0) and NNAR(2,2); and for BNPP are ARIMA([1],1,0) and NNAR(5,1). The MAPE values in the same order are 6.83% and 5.49%; 6.53% and 5.75%; 8.57% and 7.10%; 8.39% and 8.75%; 8.51% and 7.30%. Based on the comparison, NNAR outperformed ARIMA in four out of five mutual funds, with lower MAPE values and also marked by the ARIMA model tend to produce stable or unchanging values over the long term. The results of this research are expected to assist investors in consederating by choosing NNAR model, both in the short and long term, to obtain better stock mutual fund price forecasts.
Co-Authors Abdul Talib Bon Abiodun Ezekiel Owoyemi Achmad Bachrudin Adhitya Ronnie Effendie, Adhitya Ronnie Agung Prabowo Agung Prabowo Agung Prabowo Agung, Moch Panji Agus Santoso Agus Santoso Agus Sugandha Agustini Tripena Br Surbakti Aisyah Nurul Aini Amalia, Hana Safrina Amitarwati, Diah Paramita Apipah Jahira, Juwita Asep K Supriatna Asep Saepulrohman Asep Solih Awalluddin, Asep Solih Asri Rula Hanifah Audina, Maudy Afifah Aulia Kirana Aziza Ayu Nurjannah Bakti Siregar Banowati, Puspa Dwi Ayu Basuki , Basuki Basuki Bayyinah, Ayyinah Nur Betty Subartini Bimasota Aji Pamungkas bin Mamat, Mustafa Budi Pratikno Candra Budi Wijaya Carissa, Katherine Liora Dara Selvi Mariani Dedy Rosadi Dedy Rosadi DEWI RATNASARI Dewi Ratnasari Dhika Surya Pangestu Diah Chaerani Diah Paramita Amitarwati Diana Ekanurnia Dianti, Estu Putri Dihna, Elza Rahma Dini Aulia Dwi Susanti Dwi Susanti Dwi Susanti Dwi Susanti Dwi Susanti Eddy Djauhari Edi Kurniadi Ema Carnia Emah Suryamah, Emah Eman Lesmana Endang Rusyaman Endang Soeryana Hasbullah Fasa, Rayyan Al Muddatstsir Febrianty, Popy Firdaus, Muhammad Rayhan Forman Ivana S. S. S. Ghazali, Puspa Liza Grida Saktian Laksito Hadiana, Asep Id Haq, Fadiah Hasna Nadiatul Hasbullah, Soeryana Hasriati Hasriati Hazelino Rafi Pradaswara Herlina Napitupulu Herlina Napitupulu Hidayana, Rizki Apriva Ibrahim M Sulaiman Ihda Hasbiyati Iin Irianingsih Ira Sumiati Ismail Bin Mohd Januaviani, Trisha Magdalena Adelheid Jumadil Saputra Jumadil Saputra Kahar, Ramadhina Hardiva kalfin Kalfin Kalfin, Kalfin Khairi, M. Ihsan Kusumaningtyas, Valentina Adimurti Labitta, Kirana Fara Laksito, Grida Saktian M. Ihsan Khairi Maraya, Nisrina Salsabila Maulana Malik Ma’mur, Lutfi Praditia Melina Melina Melina Melina, Melina Mochamad Suyudi Mohamad Nurdin, Dadang Muhammad Arief Budiman Muhammad Iqbal Al-Banna Ismail Mustafa Mamat Mustafa Mamat Mustafa Mamat Nabilla, Ulya Nahda Nabiilah Nita Rulianah Noriszura Ismail Norizan Mohamed Novianti, Saqila Novieyanti, Lienda Novinta S, Fujika Novitasari, Ela Nugraha, Dwita Safira Nur Mahmudah Nurdyah, Himda Anataya Nurfadhlina Abdul Halim Nurul Fadilah Okta Yohandoko, Setyo Luthfi Pardede, Ester Priyatna, Yayat Puspa Liza Ghazali Putri, Aulya Putri, Linda Damayanti Putri, Sherina Anugerah Raharjanti, Amalia Rahman, Rezki Aulia Ramdhania, Tya Shafa Ratih Kusumadewi Riadi, Nadia Putri Riaman Riaman Riaman Riaman Riaman Riaman Riaman Riaman, Riaman Rini Cahyandari Riza Adrian Ibrahim Rosadi, D. - Rulianah, Nita Salamiah, Mia Salih, Yasir Sampath, Sivaperumal Saputra, Jumadil Sianturi, Sri Novi Elizabeth Sisilia Sylviani Siti Sabariah Abas Soeryana Hasbullah Sri Purwani Stanley Pandu Dewanto Subanar - Subanar . Subanar Subanar Subiyanto Subiyanto Sudradjat Supian Suhaimi, Nurnisaa binti Abdullah Sulastri, S Sumiati, Ira Supian, Sudradjat Suroto Suroto Susanto, Sunarta Sutiono Mahdi Sutisna, Sarah Suyudi, Mochamad Suyudi, Mochammad T.P Nababan Tampubolon, Carlos Naek Tua Tika Fauzia Tiswaya, Waway Titi Purwandari Titin Herawati Umar A Omesa Valentina Adimurti Kusumaningtyas Verrany, Maria Jatu Vimelia, Willen Wahid, Alim Jaizul Wan Muhamad Amir W Ahmad Widyani, Azizah Rini Wiliya Wiliya Yasir Salih Yasmin, Arla Aglia Yhenis Apriliana Yulianus Brahmantyo Yulison Herry Chrisnanto Yuningsih, Siti Hadiaty Yuyun Hidayat Zahra, Ami Emelia Putri Zinedine Amalia Noor Mauludy Reihan