Claim Missing Document
Check
Articles

Peramalan Jumlah Kunjungan Wisatawan Kota Batu Menggunakan Metode Time Invariant Fuzzy Time Series Aria Bayu Elfajar; Budi Darma Setiawan; Candra Dewi
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 2 (2017): Februari 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1069.428 KB)

Abstract

Forecasting systems with fuzzy time series capturing the pattern of past data and then use it to project future data. The process also does not require a complex learning system as it exists on genetic algorithms and neural networks, so that make the system is easy to develop. In the prediction using fuzzy time series, the length of the interval has been determined at the beginning of the calculation process. While determining the interval length is very influential in the formation of fuzzy relationships also will have an impact on the prediction of the outcome differences. Therefore, the formation of the fuzzy relationship must be precise and it requires the determination of an appropriate interval length. One method that can be used to determine the effective length of the interval is an average based method. In this paper, the authors implement the fuzzy time series to forecast the monthly visitor data, as for the data used for testing is derived from Dinas Pariwisata Kota Batu and from the results of tests conducted that data forecasting using Average based earned value error AFER best of 0.0056% by using 60 training data
Deteksi Tepi Danau Pada Citra Satelit Menggunakan Metode Canny Koko Pradityo; Budi Darma Setiawan; Randy Cahya Wihandika
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 3 (2017): Maret 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1079.132 KB)

Abstract

Lake is an important land feature for human life. Changes in a lake's condition would affect the environment and the people living nearby. One of the method being used to detect changes in lake's condition is by using an edge detection of the lake based on satellite image for further analysis such as measuring the change in lake's total area. Appropriate implementation and optimization of such algorithm can lead to a better analysis of the lake's condition. In this research, the system implemented Canny Edge Detection algorithm to detect the edge of a lake on a satellite image. A segmentation algorithm based on color thresholding is used to improve the edge detection algorithm. The test result shows that Canny Edge Detection algorithm has 57% error detection rate, while segmentation process using color thresholding improves the detection performance by 67%.
Sistem Optimasi Rute Tempat Wisata Kuliner Di Malang Menggunakan Algoritma Bee Colony Muhammad Arif Hermawan; Nurul Hidayat; Budi Darma Setiawan
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 3 (2017): Maret 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1200.115 KB)

Abstract

The number of culinary attractions in Malang that can be reached makes it difficult for culinary lovers to find the optimum route, in terms of distance, time, and cost to travel from one place to another. One of the factor that influence people's when they did culinary tour is the transportation fees. A thing that is very relate with transportation is the distance. Many culinary lovers feel like they have wasting their time to get to the place they want because they choose the wrong routes. Since Malang has so many culinary attractions, it takes optimization in searching the optimum route from starting point to the destination point. The bee colony algorithm was chosen because the algorithm is considered to have the ability to exit local minimum and can be efficiently used for optimization. Bee colony algorithm also can solve the problem of Traveling Salesman Problem better than other algorithm which is also based on group intelligence. At the experiment we can conclude that bee colony algorithm has converged in the search for the best solution that can be seen from the fitness resulted. One of the best have been convergence in bee colony at 20 of 50 bee colony amounts. In addition the convergence can also be seen on the number of iterations at 20 of the maximum number of iterations 50.
Penerapan Metode K-Nearest Neighbor (KNN) dan Metode Weighted Product (WP) Dalam Penerimaan Calon Guru Dan Karyawan Tata Usaha Baru Berwawasan Teknologi (Studi Kasus : Sekolah Menengah Kejuruan Muhammadiyah 2 Kediri) Nihru Nafi' Dzikrulloh; Indriati Indriati; Budi Darma Setiawan
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 5 (2017): Mei 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (878.441 KB)

Abstract

World of particular employment agencies Vocational High School, many a teacher or school employee who less clever in technology of the current technological developments. Actually, it is in need of teachers and school administration employees who have qualified human resources high in the knowledge of science and technology. The school is in need it is because it affects how do learning on students in school. To meet the desired standards of quality teachers, during The Vocational High School Muhammadiyah 2 Kediri is selection and recruitment of teachers by means of manual employees. The selection has been done manually through the test phase 4 aspects of your application letter and attachments GPA averages, academic test, test general knowledge of science and technology (IPTEK), and interview. The data collection process for the selection still use manual. Therefore, we need a web-based system so that the selection acceptance of new teacher candidates can run more effectively and efficiently. On this website using K-Nearest Neighbor (KNN) and the method of Weighted Product (WP). K-Nearest Neighbor used to determine the weight of each criterion to classify the good or bad. After classifying the KNN method, the selection of prospective teachers will be recruited by the school Vocational High School Muhammadiyah 2 Kediri using Weight Product (WP). Weight Product used to determine the results of the classification by KNN method to perform a ranking in order to take the best results. Tests conducted consisting of, testing the accuracy of the value of K means and accuracy testing of the WP value criteria weighting method. The accuracy of the test results obtained suitability accuracy value by 94%, precision 80%, and recall 80%.
Algoritme Genetik untuk Optimasi Pembentukan Fungsi Regresi Linier dalam Menentukan Kebutuhan Volume Air Penyiraman Tanah Hendra Pratama Budianto; Budi Darma Setiawan; Putra Pandu Adikara
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 9 (2017): September 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (867.541 KB)

Abstract

Seed Laboratory BPTP East Java is one of provincial government work units that have assignment as the technical implementer to conduct a study in seed growth. Currently at this place is being developed automatic watering device based on soil humidity sensor, but the device cannot predict the volume of water needed in order to keep the moist of seed growth media. With the help of humidity sensor on device and expert's knowledge, the observations dataset of soil moisture to the needs of waters volume has been obtained. This study was conducted to apply linear regression method so that the device can perform predictions based on dataset patterns as an equation. The accuracy of prediction results with this method is measured by the coefficient of determination. The coefficient of determination can be decreasing due to the arising of observation outliers because Inaccuracy of observation results. The solution from this study is using genetic algorithm with information criteria as comparison for detecting observation outliers to eliminated. After eliminating 6 observations outliers were detected by genetic algorithms in this study, shows increase in the coefficient of determination from 0.9673 to 0.9935.
Optimasi Support Vector Regression (SVR) Menggunakan Algoritma Improved-Particle Swarm Optimization (IPSO) untuk Peramalan Curah Hujan Husin Muhamad; Imam Cholissodin; Budi Darma Setiawan
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 11 (2017): November 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1210.768 KB)

Abstract

Climate change that happens because of global warming also cause change in rainfall patterns. Knowing rainfall patterns is really important for some activity and works. So, rainfall forecasting is needed to understand the rainfall patterns in the future. One of the method used in forecasting is Support Vector Regression. But, SVR still has weakness in determining the right values for the parameters. So, an optimization algortithm is needed to help determining the values of the parameters in SVR. The purpose of this research is to do rainfall forecasting in Pujon area, Malang using Support Vector Regression that's been optimized by Improved-Particle Swarm Optimization. Optimization of SVR is done for getting the optimal values of SVR's parameters. The optimized SVR's parameters are (learning rate constants), (complexity), (Hessian's coefficient), (error rate) dan (kernel's coefficient). The rainfall forecasting for the first ten days of January from 2007 until 2015 by using IPSO-SVR resulted value of 0.213389 in RMSE compared to using only SVR which resulted value of 25.839085 in RMSE. This proved that optimization of SVR using IPSO is better compared to using the unoptimized SVR.
Sistem Pakar Diagnosis Penyakit Schizophrenia Menggunakan Metode Bayesian Network Rima Diah Wardhani; Rekyan Regasari Mardi Putri; Budi Darma Setiawan
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 11 (2017): November 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (929.163 KB)

Abstract

Schizophrenia is a severe mental disorder that contains thoughts, language, perceptions, and self-awareness. There are several types of schizophrenia. The relationship between the type of schizophrenia and its symptoms has uncertainty, where a symptom A is not necessarily only result in schizophrenia type X, but can lead to schizophrenia type Y. In rural areas, mental health facilities are still inadequate, so that the people there treat patients with schizophrenia with unnatural as at the brackets even in stocks. Actually, people with schizophrenia can be handled with the provision of drugs and psychological therapy with regular. Based on these problems, the authors create expert systems that are able to find solutions as do an expert in diagnosing and providing treatment solutions in patients with schizophrenia. Thus, general practitioners in small community clinics or hospitals in small areas can diagnose patients suffering from the schizophrenia. This expert system uses Bayesian Network method, PHP programming language and MySQL database. Experimental functional test results show all functional requirements can run well. In addition, the highest accuracy test results in testing the variation of training data is 92.86%. With the results of such accuracy, this expert system has a good performance to make the diagnosis of schizophrenia disease
Optimasi Fuzzy Inference System Mamdani Menggunakan Algoritme Genetika untuk Menentukan Lama Waktu Siram pada Tanaman Strawberry Agung Nurjaya Megantara; Budi Darma Setiawan; Randy Cahya Wihandika
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 11 (2017): November 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (951.723 KB)

Abstract

Soil is a crusial component for plant growth. There are many parameters that used for soil examination, and one of its parameter is soil's dampness. Soil Laboratory Balai Pengkajian Teknologi Pertanian Jawa Timur is one of the work units that has a duty to examine the soil for plant nursery purpose. However, due to the conventional tools that they used sometimes the examination result is not as accurate as they expected. Because of that problem the author did some research to make a smart computing system that can be implemented on a tool that can maintain the soil's dampness automatically. Fuzzy Inference System Mamdani is used to calculate how long does it take to water the plants by using two variable inputs; initial dampness and water volume. Genetic algorithm is used to get an optimal membership function by optimizing the boundaries of each membership function. The output of this research will display the optimal time to water the plants. From the examination result we got an error value for about 2,516651, but after optimization the number is reduced to 0,000121. With that result we can conclude that using Fuzzy Inference System Mamdani and optimized with genetic algorithm is able to calculate how much time that it takes to water the plants and still able to get a good outcome. Keywords: Plants, fuzzy inference system, Mamdani, genetic algorithm, optimization
Prediksi Waktu Panen Tebu Menggunakan Gabungan Metode Backpropagation dan Algoritma Genetika Dwi Ari Suryaningrum; Dian Eka Ratnawati; Budi Darma Setiawan
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 11 (2017): November 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (708.75 KB)

Abstract

Before sugar cane was milled by the factory, the first process is analysis of sugar cane maturity. The best sugar cane condition to be ground is mature cane that can be seen from several factors such as garden area, age, stem diameter, the average segment per stem and the average length per stem. These factors are used as attributes in the research conducted. To simplify the process, then we proposed this research on the prediction of sugar cane harvest time. With so much data being used and repeated processes, it will be difficult to process manually and takes a long time. In addition, the manual process does not close the possibility of an increasing error. This research uses a combination of genetic algorithm and backpropagation in the process of predicting the harvest time. Genetic algorithms are the best solution used to optimize prediction results by weight selection and bias. Backpropagation method is used to calculate Mean Square Error (MSE) value, which will be used in calculation of fitness value and also on prediction of data test. In this research will be done five kinds of testing, as follows generation test, population size test, test combination of crossover rate and mutation rate, testing of learning rate and testing of Average Forecasting Error Rate (AFER). The result of this research are predictions of harvest time, the value of fitness and AFER. The best result is result of AFER value is 0,0205%.
Aplikasi Perencanaan Wisata di Malang Raya dengan Algoritma Greedy Akhmad Eriq Ghozali; Budi Darma Setiawan; Muhammad Tanzil Furqon
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 1 No 12 (2017): Desember 2017
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (909.386 KB)

Abstract

Malang raya is one of regions which becomes the main objective place to visit because it has many tourism places. The thing which has to be noticed is determining the tourism schedule, every tourist must choose the shortest distance and time to be able to reach that destination because they can save the time. To reach that destination, it is used greedy algorithm with knapsack problem to assist the optimation process against searching the shortest traveling time and how many tourism places which can be visited from the possessed time. Time allocation which is possessed by the user to tour is used as an integrity in calculating this application, while the traveling time at each tourism locations which are also used as an integrity is time data which is gotten from google maps. With thats data, the application with greedy algorithm will calculate the most optimal location to be visited with the time which belongs to the user. According to the result of testing application with ten sample of problem cases gets accuracy result 90% from two models of greedy algorithm calculation in searching location which can be visited by the allocation time which is owned. While the result of optimal tour accuracy that is visited is 0% from the first model of calculation and 80% from the second calculation.
Co-Authors Abdul Fatih Achmad Basuki Achmad Fahlevi Addin Sahirah, Rafifa Adinugroho, Sigit Aditya Chandra Nurhakim Aditya Kresna Bayu Arda Putra Agung Nurjaya Megantara Agus Wahyu Widodo Ahmad Afif Supianto Ahmad Afif Supianto Akhmad Eriq Ghozali Akmal Subakti Wicaksana Alfi Nur Rusydi Almira Syawli, Almira Amaliah Gusfadilah Andhi Surya Wicaksana Andika Harlan Angga Dwi Apria Rifandi Anjasari, Ni Luh Made Beathris Aria Bayu Elfajar Asghany, Yusrian Ashidiq, Muhammad Fihan Azmi Makarima Yattaqillah Baihaqi, Galih Restu Barlian Henryranu Prasetio Bayu Rahayudi Bintang, Tulistyana Irfany Budi Santoso Cahyo Adi Prasojo Candra Dewi Candra Dewi Chelsa Farah Virkhansa Cindy Inka Sari Cinthia Vairra Hudiyanti Civica Moehaimin Dhewanty Deby Chintya Dellia Airyn Delpiero, Rangga Raditya Dewi, Buana Dhan Adhillah Mardhika Dian Eka Ratnawati Diva, Zahra Dwi Anggraeni Kuntjoro Dwi Ari Suryaningrum Dwi Damara Kartikasari Edo Fadila Sirat Eka Novita Shandra Eka Yuni Darmayanti Eti Setiawati Fadhlillah Ikhsan Fajar Nur Rohmat Fauzan Jaya Aziz Fajar Pradana Fanny Aulia Dewi Fattah, Rafi Indra Fatwa Ramdani, Fatwa Febri Ramadhani Fikri Hilman Fitra Abdurrachman Bachtiar Fitria, Tharessa Fitrotuzzakiyah, Shafira Puspa Gandhi Ramadhona Gembong Edhi Setiawan Gilang Ramadhan Hendra Pratama Budianto Husin Muhamad Imam Cholisoddin Imam Cholissodin Imam Cholissodin Imam Cholissodin Indah Larasati Indriati Indriati Indriati Irfan Aprison Irma Lailatul Khoiriyah Irma Nurvianti Irma Ramadanti Fitriyani Ismiarta Aknuranda Issa Arwani Issa Arwani Issa Arwani Jobel, Roenrico Karina Widyawati Khairunnisa, Alifah Kholifa'ul Khoirin Koko Pradityo Lailil Muflikhah M Kevin Pahlevi M. Ali Fauzi M. Raabith Rifqi M. Rikzal Humam Al Kholili M. Tanzil Furqon Mahar Beta Adi Sucipto, Ekmaldzaki Royhan Mahendra Data Mahendra Data Marji Marji Masayu Vidya Rosyidah Maulana, M. Aziz Mayang Arinda Yudantiar Meilia, Vina Mimin Putri Raharyani Mindiasari, Irtiyah Izzaty Miracle Fachrunnisa Almas Moch. Khabibul Karim Mochamad Chandra Saputra Mohamad Alfi Fauzan Muhammad Arif Hermawan Muhammad Dimas Setiawan Sanapiah Muhammad Khaerul Ardi Muhammad Rizkan Arif Muhammad Syaifuddin Zuhri Muhammad Tanzil Furqon Mustofa Robbani Muthia Azzahra Nadia Natasa Tresia Sitorus Nainggolan, Cesilia Natasya Nanda Agung Putra Nashrullah, Nashrullah Nelli Nur Rahma Ni'mah Firsta Cahya Susilo Nihru Nafi' Dzikrulloh Noval Dini Maulana Novanto Yudistira Nur Intan Savitri Bromastuty Nurhana Rahmadani Nurudin Santoso Nurul Hidayat Oky Krisdiantoro Olive Khoirul L.M.A. Panjaitan, Mutiharis Dauber Pindo Bagus Adiatmaja priharsari, diah Purnomo, Welly Putra Pandu Adikara Putra, Octo Perdana Putri, Rania Aprilia Dwi Setya Rachmatika, Isnayni Sugma Radifah Radifah Rafely Chandra Rizkilillah Rahmadi, Anang Bagus Rahmat Faizal Raissa Arniantya Randy Cahya Wihandika Ratna Candra Ika Rekyan Regasari Mardi Putri, Rekyan Regasari Mardi Rekyan Regasari MP Rekyan Regasari MP, Rekyan Regasari Rendi Cahya Wihandika Retiana Fadma Pertiwi Sinaga Revanza, Muhammad Nugraha Delta Revinda Bertananda Reza Wahyu Wardani Rhobith, Muhammad Ridho Agung Gumelar Rima Diah Wardhani Rinda Wahyuni Rizal Setya Perdana Rizal Setya Perdana Rizki Agung Pambudi Rizky Haqmanullah Pambudi Robih Dini Rosi Afiqo Rudito Pujiarso Nugroho Rudy Usman Azzakky Ryan Mahaputra Krishnanda Sabriansyah Rizkiqa Akbar Santoso, Nurudin Satrio Hadi Wijoyo Shelly Puspa Ardina Sigit Adinugroho Silfiatul Ulumiyah Sintiya, Karena Siti Fatimah Al Uswah Siti Utami Fhylayli Sri Wahyuni Suryani Agustin Sutrisno Sutrisno Tahajuda Mandariansah Talitha Raissa Tibyani Tibyani Tri Afirianto Tria Melia Masdiana Safitri Ulfah Mutmainnah Vina Meilia Wayan Firdaus Mahmudy Yerry Anggoro Yosendra Evriyantino Yuita Arum Sari Yuita Arum Sari Yulfa Hadi Wicaksono Zubaidah Al Ubaidah Sakti