Claim Missing Document
Check
Articles

Found 28 Documents
Search
Journal : Building of Informatics, Technology and Science

Analisis Sentimen Masyarakat Terhadap Penghapusan Honorer Berdasarkan Opini Dari Twitter Menggunakan Naïve Bayes Classifier Andriyani, Dwi Ratna; Afdal, M; Monalisa, Siti
Building of Informatics, Technology and Science (BITS) Vol 5 No 1 (2023): June 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v5i1.3541

Abstract

The removal of honorees is currently a hot topic throughout Indonesia. Sharing how honorary personnel do so that the honorary removal policy is not implemented. Most honorary personnel have served for several years, but the government has issued a circular on the abolition of honorees. Various pros and cons of society regarding the abolition of honorees, such as honorary workers can lose their jobs, not get income, and unemployment is increasing. The purpose of the study is that the government can provide strategies that must be carried out in the event of the removal of honorees, such as appointing all honorees to become Civil Servants or Government Employees with Work Agreements. So the removal of the honoree became one of the trending topics on Twitter social media in 2022. From the results of the analysis conducted, public opinion that uses Twitter is very influential for honorary workers by grouping opinions into three categories, namely positive opinions, neutral opinions, and negative opinions. So the study with text mining used the Naïve Bayes Classifier algorithm with data from Twitter tweets from January 2022 to December 2022 with 2,705 data. The results of this study obtained accuracy with 10 K-fold Cross Validation on K-10, which was 73.01%. And it was found that sentiment polarity against the removal of honorees on positive class sentiment by 10% against agreeing to remove honorees with 285 data tweets, neutral class sentiment by 67% against agreeing and disagreeing with the removal of honorees with 1,801 data tweets, and negative class sentiment by 23% against disagreeing with the removal of honorees with 619 data tweets
Penerapan Algoritma FP-Growth untuk Menentukan Strategi Promosi Berdasarkan Waktu dan Pembelian Produk Wilrose, Anandeanivha; Afdal, M; Monalisa, Siti; Munzir, Medyantiwi Rahmawita
Building of Informatics, Technology and Science (BITS) Vol 5 No 1 (2023): June 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v5i1.3577

Abstract

Sales is the main activity in every business. In making business decisions, sales patterns can be used to provide useful information such as strategies for promotion. Wandri Mart is a business engaged in the sale of products or goods commonly referred to as minimarkets in the city of Payakumbuh. In conducting promotional strategies, the owner of Wandri Mart does not know when to do promotions and what promotions are needed in order to increase sales. The purpose of this study is to obtain purchasing patterns related to the time of purchase and the type of goods purchased, so that a more effective promotional strategy can be developed. The method used by researchers is data mining techniques with the FP-Growth algorithm. The data used was taken as much as 5471 sales transaction data for 1 year. The results of this study indicate that the FP-Growth algorithm can be used to determine association rules using a minimum support of 1%, 2%, 3% and a minimum confidence of 10%. Experiments using Minimum Support 1% and Minimum Confidence 10% have the highest lift ratio value and produce more rules compared to other experiments so that it is obtained if on Tuesdays in August, customers buy instant noodles and packaged drinks with 6% and 5% support respectively and 50% and 45% confidence respectively with a lift ratio of 1.75 and 1.59 respectively. The lift ratio means that the rules have high association accuracy, and this also has a positive impact on sales and can be used as useful information for Wandri Mart to increase sales
Analisis Sentimen Terhadap Publisher Rights Dalam Mengunggah Konten Digital Menggunakan Ensemble Learning Putri, Anisa; Mustakim, Mustakim; Novita, Rice; Afdal, M
Building of Informatics, Technology and Science (BITS) Vol 6 No 1 (2024): June 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i1.5179

Abstract

Digital content encompasses various forms of information, ranging from informative text to interactive videos. YouTube, as one of the most popular social media platforms, is widely used in Indonesia. However, the proposed Publisher Rights Bill or the Draft Presidential Regulation on the Responsibility of Digital Platforms for Quality Journalism has sparked debate. In the context of YouTube, this regulation has the potential to threaten content creators. Negative reactions from various parties highlight concerns about the impact of this regulation. Therefore, this study aims to analyze sentiment towards Publisher Rights in the uploading of digital content using an ensemble learning approach. The analysis found that 60% of the sentiment was negative, reflecting concerns about copyright, royalties, or ethical issues. A total of 32% of the sentiment was neutral, indicating uncertainty or a lack of information, and only 8% of the sentiment was positive, supporting the policy of protecting publisher rights and recognizing their value and contributions. This study employed ensemble techniques based on Bagging (Random Forest) and Boosting (Adaboost), where the accuracy of Random Forest was higher at 83% compared to Adaboost's accuracy of 68%.
Perbandingan Algoritma Linear Regression, Support Vector Regression, dan Artificial Neural Network untuk Prediksi Data Obat Putri, Suci Maharani; Novita, Rice; Mustakim, Mustakim; Afdal, M
Building of Informatics, Technology and Science (BITS) Vol 6 No 1 (2024): June 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i1.5184

Abstract

Regression is a crucial focus in various fields aiming to forecast future values to aid decision-making and strategic planning. Different regression algorithms have their advantages and disadvantages, and their performance can vary depending on the data characteristics. Therefore, further analysis is needed to identify the appropriate algorithm that provides the best solution for the problem at hand. This study compares three popular regression algorithms: Linear Regression (LR), Support Vector Regression (SVR), and Artificial Neural Network (ANN) to predict drug data at a pharmacy in Riau province. Currently, the pharmacy lacks an accurate method for estimating monthly drug needs, relying instead on rough estimates. This often results in either shortages or overstock, leading to losses, especially if the drugs expire. Three types of drugs, namely Amoxicillin, Antacids, and Paracetamol were selected to test the proposed algorithms. The analysis and comparison show that the SVR algorithm outperforms the others on all three drug types when focusing on the RMSE metric. However, when the focus is on the MAPE metric, the ANN algorithm proves to be superior. Although LR does not excel in any metric, all three algorithms (LR, SVR, and ANN) have MAPE values below 10%, indicating highly accurate predictions. This accuracy is evidenced by the prediction results of all proposed models, which effectively follow the patterns and trends in the actual data
Penerapan Algoritma K-Medoids dan FP-Growth dengan Model RFM untuk Kombinasi Produk Pertiwi, Tata Ayunita; Afdal, M.; Novita, Rice; Mustakim, Mustakim
Building of Informatics, Technology and Science (BITS) Vol 6 No 2 (2024): September 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i2.5268

Abstract

Competition in the business world has increased, resulting in companies having to optimize sales and retain their customers. Customers are an important company asset that must be well looked after. The aim of customer segmentation is to understand customer purchasing behavior so that companies can implement appropriate marketing strategies. Aurel Mini Mart is a retail business that does not yet consider the recency, frequency and monetary value of customer shopping. So far, promotions have been carried out only based on estimates, without taking into account accurate data and information. This research combines the RFM model with data mining techniques to segment customers. Based on the 5 clusters formed from the clustering process, gold customers are in cluster 1 which has high loyalty with low recency value, high frequency and high monetary value. This shows that customers in this segment often make purchases for quite large amounts of money. Meanwhile, customers in clusters 2, 3, 4, and 5 are dormant customers who rarely make transactions and the amount of money spent is also small. After the customer segmentation process is complete, the next step is to use the FP-Growth Algorithm to associate the products purchased by customers. This aims to obtain a better product combination, so that the sales strategy can be more effective and the company can make a profit.
Sentimen Analisis Social CRM Pada Media Sosial Instagram Menggunakan Machine Learning Untuk Mengukur Retensi Pelanggan F. Safiesza, Qhairani Frilla; Afdal, M; Novita, Rice; Mustakim, Mustakim
Building of Informatics, Technology and Science (BITS) Vol 6 No 2 (2024): September 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i2.5269

Abstract

To create and maintain a superior competitive advantage in a knowledge-based economy, businesses must be able to utilize data and manage customer relationships through the implementation of Customer Relationship Management (CRM), particularly Social CRM. Social CRM is a renewal of business strategy that is created to engage customers in a collaborative conversation and create mutually beneficial value in a trusted and transparent business environment. Seeing this development as one of the successful culinary companies in the Souvenir sector in Pekanbaru, the company must be able to process all the information obtained. Currently, the company has never analyzed comments on social media, especially the Instagram account. These comments are useful for evaluation material and can be a parameter of customer satisfaction and to see the potential for customer retention. To assess positive and negative comments on the Instagram account, sentiment analysis can be carried out using machine learning, namely 3 classification algorithms, namely Naive Bayes Classifier (NBC), Support Vector Machine (SVM) and Random Forest (RF). The sentiment results show that the SVM and NBC algorithms obtain the best accuracy of 74.26% compared to RF, and the results of the social CRM analysis show that customers are more satisfied with the company in terms of products, services, and actions taken by the company, so that the company is considered capable of retaining its customers.
Analisis Sentimen Masyarakat Terhadap Pinjaman Online di Twitter Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor Afandi, Rival; Afdal, M; Novita, Rice; Mustakim, Mustakim
Building of Informatics, Technology and Science (BITS) Vol 6 No 2 (2024): September 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i2.5300

Abstract

The very rapid development of technology has had a big impact on humans. The influence of technological developments that we can feel is in the financial sector. One thing that is quite popular lately is online loans. Pinjol or online loan is a fast and easy online money lending service via an application or website, with fast approval and disbursement, but often has high interest and short tenors. On Twitter, review comments and information used are stored in text form. One of the processes for retrieving text mining information in the text category is Sentiment Analysis to see whether a sentiment or opinion tends to be Positive, Negative or Neutral in the reviews of Pinjol application user comments. In the data collection results there were 600 initial data, namely 122 Positive reviews, 432 Negative reviews and 43 Neutral reviews. Then the sentiment classification process using the Naive Bayes and K-NN algorithms produces accuracy, precision and recall of 68%; 83% and recall 74% on the Naive Bayes algorithm, while the results of accuracy, precision and recall on K-NN are 72%; 74% and recall 96% with experiments using 80% training data and 20% test data
Implementasi Algoritma Random Forest Untuk Analisa Sentimen Data Ulasan Aplikasi Pinjaman Online Digoogle Play Store Wibisono, Yudistira Arya; Afdal, M.; Mustakim, Mustakim; Novita, Rice
Building of Informatics, Technology and Science (BITS) Vol 6 No 2 (2024): September 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i2.5368

Abstract

Online lending programs are examples of financial service platforms offered directly by commercial fintech players. However, there are rampant cases of fraud and unethical actions by some online lenders such as threatening and harassing billing methods due to late payments. This research aims to classify sentiment from user reviews of online loan applications on the Google Play Store into positive, negative, or neutral categories. This research conducts sentiment analysis of user reviews of online loan applications such as AdaKami, AdaModal, Cairin, FinPlus and UangMe using a text mining approach. This approach can perform sentiment classification on user reviews quickly. Data was collected using the scrapping technique on the Google Play Store and obtained a total of 200 data on each online loan application. The modeling used in this research is the division of training data and test data as much as 80:20. The highest accuracy results using the Random Forest algorithm are Cairin and UangMe applications with 85% accuracy. While the application that gets the lowest accuracy result is the AdaModal application with 75% accuracy. A visualization analysis using word clouds was also conducted to understand the context of user reviews of the pinjol apps. The results show that users almost always discuss loan limits in every sentiment across the five apps.
Perbandingan Performa Algoritma NBC, C4.5, dan KNN dalam Analisis Sentimen Masyarakat terhadap Krisis Petani Muda pada Media Sosial Facebook Nurkholis, Nurkholis; Permana, Inggih; Salisah, Febi Nur; Mustakim, Mustakim; Afdal, M
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6082

Abstract

In Indonesia, young farmers face various challenges and crises that hinder the growth and sustainability of the agricultural sector. They face obstacles such as lack of access to capital, limited technology, climate change, and low selling prices for their crops. In addition, they also often face problems in obtaining accurate and relevant information in an effort to facilitate better decision-making in agricultural businesses, so that the interest of young people today to become farmers is decreasing. The study aims to Compare the Performance of NBC, C4.5, and KNN Algorithms in the Analysis of Public Sentiment towards the Young Farmer Crisis on Facebook Social Media. The application of the K-Fold Cross Validation method is (K = 10). Sentiment analysis is carried out with 3 labels (positive, negative, and neutral). The data used in making the classification model (data from preprocessing the stemming column) using (Google Colab) amounted to 4,878 data with Positive sentiment of 43.13% (2,104), Neutral 39.59% (1,931), Negative 17.28% (843) from the initial data without nested comments, which is 4,981 and the total number of Facebook data is 2,900 likes, 6,700 comments, and 3.3 million viewers. The accuracy of the NBC algorithm is 57.32%, the C4.5 algorithm is 98.42%, and the KNN algorithm (K = 19) is 97.33%. It can be concluded that the results of the comparison of the performance of the three algorithms using (Rapidminer10.3), the C4.5 algorithm gets a higher accuracy of 98.42% and is superior because it produces a decision tree.
Analisis Sentimen Tanggapan Publik di Twitter Terkait Program Kerja Makan Siang Gratis Prabowo–Gibran Menggunakan Algoritma Naïve Bayes Classifier dan Support Vector Machine Ramadhani, Annisa; Permana, Inggih; Afdal, M; Fronita, Mona
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6188

Abstract

Indonesia faces a serious challenge related to stunting, with rates reaching 21% in 2024, although this represents a decrease from 24% in 2021. In response, the government has launched various programs to address this issue, including nutrition education, health check-ups for pregnant women, and supplementary food provisions. Amid these efforts, the proposed free lunch program aims to improve nutritional quality for children and pregnant women. However, this program has sparked controversy over the required budget, estimated at IDR 450 trillion, which could impact the national budget balance and lead to inflation.This study analyzes public sentiment toward the free lunch program using the Naïve Bayes Classifier (NBC) and Support Vector Machine (SVM) algorithms. An analysis of 1,028 tweets revealed that negative sentiment predominates at 44.84%, followed by positive sentiment (32.39%) and neutral sentiment (22.76%). SVM outperformed NBC with an accuracy of 75.39%, compared to NBC's 68.97%. The findings provide important insights into public perceptions of the program and highlight the need for further research to improve sentiment analysis methodologies.
Co-Authors - Mardalena, - A. Adriani AA Sudharmawan, AA Addion Nizori ADRIANI ADRIANI Adriani Adriani Afandi, Rival Aini, Delvi Nur Al-Yasir, Al-Yasir Alfakhri, Rezky Alfian, Zhevin Andaranti, Arifah Fadhila Andriyani, Dwi Ratna Angraini Angraini Anisa Putri Annisa Ramadhani Anofrizen Anofrizen Arif Marsal Arrazak, Fadlan Auliani, Sephia Nazwa Ayu Lestari Silaban Ayu Silaban Azzahra, Aura Basri, Faishal Khairi Darlis Darlis Darlis Darlis, Darlis Eki Saputra F. Safiesza, Qhairani Frilla Fauzan Ramadhan Febi Nur Salisah Filawati Filawati FITRY TAFZI Hendri, Desvita Heni Suryani Husaini, Fahri Husna, Nur Alfa Indah Lestari, Indah Indriyani Indriyani Indriyani Inggih Permana Intan, Sofia Fulvi Irwanda, Mahyuda Jazman, Muhammad Kusuma, Gathot Hanyokro Lisani Lisna, Lisna Loka, Septi Kenia Pita Luber, Yusuf Amirullah Mawaddah, Zuriatul Megawati - Miftahul Jannah Mochammad Imron Awalludin Mona Fronita, Mona Muhammad Ambar Islahuddin Munandar, Darwin Munzir, Medyantiwi Rahmawita Mustakim Mustakim Mustakim Mutia, Risma Muttakin, Fitriani Nabillah, Putri Nasution, Nur Shabrina Nelwida Nelwida Nurfadilla, Nadia Nurkholis Nurkholis Pertiwi, Tata Ayunita Priady, Muhamad Ilham Prizky Nanda Mawaddah Putra, Moh Azlan Shah Putri, Celine Mutiara Putri, Suci Maharani Rahmah, Astriana Rahmawita, Medyantiwi Ramadani, Faradila Ramadhani, Indah Rayean, Rival Valentino Remon Lapisa Rice Novita Rozanda, Nesdi Evrilyan Saad, Wan Zuhainis Sabillah, Dian Ayu Saitul Fakhri Sari, Gusmelia Puspita Sarwo Edy Wibowo Siti Monalisa Siti Rohimah Suhessy Syarif Suhessy Syarif, Suhessy Suryadi Suryadi Suryadi Suryadi Suryani, Heni Susanti, Pingki Muliya Suseno, Rahayu Syafi'i, Azis Syafrizal Syafrizal Syahri, Alfi Syaifullah Syaifullah T. T. Poy Teja Kaswari Tri Astuti Triningsih, Elsa Tshamaroh, Muthia Ula, Walid Alma Wibisono, Yudistira Arya Wilrose, Anandeanivha Winnugroho Wiratman, Manfaluthy Hakim, Tiara Aninditha, Aru W. Sudoyo, Joedo Prihartono Y Zaharanova Yuda, Afi Ghufran Yulianti, Nelvi Yun Alwi Yurleni Yurleni Yusuf Amirullah Luber Zarnelly Zarnelly Zarqani, Zarqani