p-Index From 2021 - 2026
7.163
P-Index
This Author published in this journals
All Journal dCartesian: Jurnal Matematika dan Aplikasi JURNAL MATEMATIKA STATISTIKA DAN KOMPUTASI SAINSMAT CAUCHY: Jurnal Matematika Murni dan Aplikasi AKSIOMA JURNAL ILMIAH MATEMATIKA DAN TERAPAN Indonesian Journal of Applied Statistics JMPM: Jurnal Matematika dan Pendidikan Matematika BAREKENG: Jurnal Ilmu Matematika dan Terapan Dinamisia: Jurnal Pengabdian Kepada Masyarakat JTAM (Jurnal Teori dan Aplikasi Matematika) Indiktika : Jurnal Inovasi Pendidikan Matematika Jambura Journal of Mathematics Al-Khwarizmi: Jurnal Pendidikan Matematika dan Ilmu Pengetahuan Alam Delta: Jurnal Ilmiah Pendidikan Matematika Transformasi : Jurnal Pendidikan Matematika dan Matematika ALGORITMA : Journal of Mathematics Education Vygotsky: Jurnal Pendidikan Matematika dan Matematika InPrime: Indonesian Journal Of Pure And Applied Mathematics Jurnal Bakti Masyarakat Indonesia Majalah Ilmiah Matematika dan Statistika (MIMS) Jurnal Statistika dan Aplikasinya Jambura Journal of Mathematics Education Jambura Journal of Biomathematics (JJBM) JAMBURA JOURNAL OF PROBABILITY AND STATISTICS Euler : Jurnal Ilmiah Matematika, Sains dan Teknologi Journal of Science and Technology Journal of Mathematics: Theory and Applications Research in the Mathematical and Natural Sciences SAINSMAT: Jurnal Ilmiah Ilmu Pengetahuan Alam Aceh International Journal of Science and Technology Euclid Jurnal Matematika Integratif JNPM (Jurnal Nasional Pendidikan Matematika) d'Cartesian: Jurnal Matematika dan Aplikasi Differential: Journal on Mathematics Education
Claim Missing Document
Check
Articles

Dinamika dan Stabilitas Populasi pada Model Penyebaran COVID-19 dengan Vaksinasi dan Migrasi Penduduk Resmawan Resmawan; Lailany Yahya; Agusyarif Rezka Nuha; Sri Meylanti S. Ali
Jambura Journal of Mathematics Vol 5, No 2: August 2023
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjom.v5i2.19992

Abstract

This article discusses the mathematical model of the spread of COVID-19 by considering vaccination and population migration. The former model is analyzed by determining the equilibrium point, basic reproduction number, analyzing the stability of the equilibrium point, sensitivity analysis, and accompanied by numerical simulation. Analysis of the stability of disease-free and endemic equilibrium points using the Routh-Hurwitz Criteria and the Castillo-Chaves and Song theorems. The results of the analysis show that there are two equilibrium points, namely a disease-free equilibrium point (T1), which is locally asymptotically stable when R0 1, and an endemic equilibrium point (T2), which is locally asymptotically stable when R0 1. Furthermore, the sensitivity analysis showed that the most sensitive parameters to changes in the basic reproduction number were the emigration rate parameter (m2) and the infection probability parameter after contact between infected and susceptible individuals without vaccination (h). In addition, the numerical simulation results show that the sensitive parameter values, namely m2, h, zse, g, and # have a significant effect on the basic reproduction numbers. Suppressing the chance of infection in susceptible individuals and the rate of contact between susceptible and exposed individuals, as well as increasing the number of individuals who emigrate and who are vaccinated, can reduce the transmission of COVID-19.
Analisis Sensitivitas pada Model Matematika Transmisi Pengguna Narkoba dengan Faktor Edukasi Resmawan Resmawan; Anissa Dwi Wijayanti; Lailany Yahya; Agusyarif Rezka Nuha
Jurnal Matematika Integratif Vol 16, No 2: Oktober 2020
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (376.75 KB) | DOI: 10.24198/jmi.v16.n2.28804.95-103

Abstract

Drugs have a bad effect on the users which is mental disorders and health problems even causing death. Cases of drug users spread can be formulated with a mathematical approach through the concept of mathematical modeling. This article discusses the mathematical model of SURS type drug users spread. Model development by adding educational factors to each population class. Furthermore, the basic reproduction number () is constructed to model the threshold value of the spread of drug addicts. The basic reproduction number is determined by using a Next Generation Matrix approach. The next step is to do a sensitivity analysis to determine the parameters that most influence the spread of drug addicts. Based on the analysis results, the parameters β and indicate the most dominant sensitivity index to the basic reproduction numbers. At the end of this article, a simulation is carried out to show the effect of changing parameters on the population of drug addicts.
Penerapan Metode Double Moving Average Untuk Meramalkan Hasil Produksi Tanaman Padi di Provinsi Gorontalo Hendra Andrianto Yusuf; Ismail Djakaria; Resmawan Resmawan
d\'Cartesian: Jurnal Matematika dan Aplikasi Vol 9, No 2 (2020): September 2020
Publisher : Sam Ratulangi University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35799/dc.9.2.2020.28377

Abstract

Artikel ini membahas tentang metode double moving average untuk mengetahui hasil ramalan produksi tanaman padi di Provinsi Gorontalo. Metode double moving average merupakan metode rata-rata bergerak linier yang digunakan untuk mengatasi data deret waktu dengan pola yang cenderung mengalami trend linear. Berdasarkan pola data hasil produksi tanaman padi, menunjukkan bahwa pola data tersebut mengalami peningkatan setiap tahunnya dan dapat diidentifikasi bahwa data berpola trend.  Hasil penelitian ini menunjukan bahwa model terbaik untuk meramalkan hasil produksi tanaman padi diperole MA (2 × 2) dengan model persamaan adalah F18+p =331692+(-5373) × m  dan nilai tingkat akurasi yaitu measure absolute persenrage error (MAPE) sebesar 5.3537. Sehingga diperoleh hasil peramalan 5 tahun ke depan yaitu tahun 2019 sebesar 326318.5 Ton, 2020 sebesar 32094.5 Ton, dan seterusnya sampai tahun 2023 sebesar 304826.5 Ton.
Implementation of Cryptography Using the RSA (Rivest-Shamir-Adleman) Algorithm in Encoding Text Messages and Documents Sari, Septi Rahmita; Resmawan, Resmawan; Yahya, Nisky Imansyah; Yahya, Lailany
JOSTECH Journal of Science and Technology Vol 4, No 1: Maret 2024
Publisher : UIN Imam Bonjol Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15548/jostech.v4i1.8280

Abstract

Cryptography can be used in prevent data, one of the preventive measures is by encoding messages. Cryptography is the study of encoding messages or ways of data protection. In encoding the content of messages, there is an algorithm conventionally used nowadays, the RSA (Rivest-Shamir-Adleman) algorithm. The RSA algorithm is a method that has two different keys for each encryption and decryption process but is still interrelated to maintain security in processing the data. In finding the key, the RSA algorithm utilizes the rule of prime number. The larger the prime number used as a key, the harder it is to find a large number as a factor. This research describes the process of encrypting text messages, the content of documents using the RSA algorithm, and the key generation process. Those processes are done by converting plaintext into ciphertext using ASCII code, which is 256 long, and using PKCS (Public Key Cryptography Standards) is the encryption process on the RSA algorithm. This study uses Pyhton programming language to implement the RSA algorithm on text messages and documents. As a recommendation to the subsequent studies, it is proper to use algorithms or other programming languages to secure messages.
Deskripsi Hasil Belajar Matematika Siswa di SMP Muhammadiyah Tolangohula Kue, Hawai Abas; Badu, Syamsu Qamar; Resmawan, Resmawan; Zakiyah, Siti
Research in the Mathematical and Natural Sciences Vol. 1 No. 1 (2022): November 2021-April 2022
Publisher : Scimadly Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (211.624 KB) | DOI: 10.55657/rmns.v1i1.8

Abstract

This study aims to describe students' mathematics learning outcomes in the even semesters of the 2019/2020 school year. This research was conducted at SMP Muhammadiyah 1 Tolangohula using a descriptive method involving 19 students as research samples. The data obtained from the mathematics learning outcomes of class VII students who took the even semester exam where the test was presented in the form of objective questions and essays involving several indicators: (1) knowledge, (2) understanding, (3) application and (4) analysis. Then described in the form of mean  , median (Me), mode (Mo), histogram and percentage. The results showed that students' mathematics learning outcomes in even semesters were in a very low category with the percentage in the very low category as much as 84.21%, as much as 0% in the low category, as much as 10.53% in the medium category, as much as 0% in the high category. and there are as many as 5.26% in the very high category.
Pengaruh Model Problem Based Learning Terhadap Kemampuan Berpikir Kreatif Matematis Siswa pada Materi Kubus dan Balok Selfiani, Selfiani; Machmud, Tedy; Resmawan, Resmawan; Ismail, Yamin
Research in the Mathematical and Natural Sciences Vol. 1 No. 2 (2022): May-October 2022
Publisher : Scimadly Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (215.116 KB) | DOI: 10.55657/rmns.v1i2.66

Abstract

This study discusses the effect of the Problem Based Learning model on students' mathematical creative thinking skills on cube and cuboid material. The research was carried out using an experimental method involving students of SMP Negeri 3 Limboto Barat as research subjects. The research design used is Post Test Only Control Design. Sampling was carried out using the Simple Random Sampling technique. Measuring mathematical creative thinking ability is done using a test instrument that has met the requirements of item validity and instrument reliability requirements. The results showed that applying the Problem-Based Learning model in learning significantly influenced students' creative thinking skills on cube and cuboid material. This can be seen from students' mathematical creative thinking ability in learning using the Problem-Based Learning model, which is higher than students' mathematical creative thinking ability in direct learning.
Deskripsi Kemampuan Berpikir Analitis Siswa Dalam Pembelajaran Matematika Pada Materi Operasi Bilangan Pecahan Napui, Ismawanti; Takaendengan, Bertu Rianto; Resmawan, Resmawan; Pauweni, Khardiyawan A.Y
Delta: Jurnal Ilmiah Pendidikan Matematika Vol 12, No 2 (2024): DELTA : JURNAL ILMIAH PENDIDIKAN MATEMATIKA
Publisher : Universitas Pekalongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31941/delta.v12i2.3973

Abstract

This study aims to describe students' analytical thinking skills in learning mathematics on fraction operations. This research was conducted at SMP Negeri 1 Ponelo Kepulauan which involved 26 students. This data collection technique is in the form of essay tests and interviews totaling 8 questions. To measure students' ability to think analytically, 3 indicators are used, namely: 1) Differentiating, 2) Organizing, and 3) Connecting. The results of this study indicate that students' analytical thinking skills in learning mathematics for class VII students of SMP Negeri 1 Ponelo Kepulauan are still in the moderate category because they reach a percentage of. Furthermore, the results for each indicator also belong to the medium category because it achieves a presentation of 61.54% respectively; 53.85%; 65.38%.
Existence and Uniqueness of Fixed Point for Cyclic Mappings in Quasi-αb-Metric Spaces Al Idrus, Ainun Sukmawati; Resmawan, Resmawan; Payu, Muhammad Rezky Friesta; Nasib, Salmun K.; Asriadi, Asriadi
InPrime: Indonesian Journal of Pure and Applied Mathematics Vol 4, No 1 (2022)
Publisher : Department of Mathematics, Faculty of Sciences and Technology, UIN Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/inprime.v4i1.24462

Abstract

The fixed point theory remains the most important and preferred topic studied in mathematical analysis. This study discusses sufficient conditions to prove a unique fixed point in quasi-αb-metric spaces with cyclic mapping. The analysis starts by showing fulfillment of the cyclic Banach contraction and proving the Cauchy sequence as a condition for proving a unique fixed point in quasi-αb-metric spaces with cyclic mapping. Furthermore, it's shown that the cyclic mappings, T have a unique fixed point in quasi-αb-metric spaces. Finally, an example is given to strengthen the proof of the theorems that have been done.Keywords: fixed point theory; Quasi -Metric spaces; Cyclic Banach Contraction; Cauchy sequence. AbstrakTeori titik tetap termasuk salah satu topik penting dan menarik untuk diteliti pada bidang analisis. Pada penelitian ini, dibahas tentang syarat cukup dalam membuktikan bahwa terdapat titik tetap tunggal dalam ruang quasi- b-metrik pada pemetaan siklik. Analisis diawali dengan menunjukkan pemenuhan kondisi kontraksi Banach siklik dan pembuktian barisan Cauchy sebagai syarat pembuktian bahwa terdapat titik tetap tunggal pada pemetaan siklik dalam ruang quasi- b-metrik. Selanjutnya ditunjukkan bahwa pemetaan siklik  memiliki titik tetap tunggal dalam ruang quasi b-metrik. Terakhir, diberikan contoh untuk memperkuat pembuktian teorema yang telah dilakukan.Kata Kunci: teori titik tetap; ruang Quasi -Metrik; Kontraksi Banach Siklik; barisan Cauchy.
Analisis Model Matematika Penyebaran Penyakit Kolera Dengan Mempertimbangkan Masa Inkubasi Nuha, A R; Resmawan
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 17 No. 2 (2020)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/2540766X.2020.v17.i2.15200

Abstract

Cholera is a type of diarrheal disease caused by the presence of Vibrio cholerae in the patient's intestine. Bacteria V. cholerae has the ability to survive in water so that it will easily transmit disease to humans. This study discusses the dynamics of the spread of cholera caused by V. cholerae bacteria. The incubation period in the disease transmission system is a factor that considered in a compiled mathematical model. Besides giving the vaccine is considered a powerful way to reduce the rate of transmission. This study aims to modify the mathematical model of the spread of cholera, carry out the analysis of the stability of the modified model, and carry out numerical simulations. The modified model will be determined by its equilibrium and then stability analysis will be carried out at the equilibrium by considering the basic reproduction number (R0). Modification of the model with consideration of the incubation period produces a mathematical model of the spread of cholera type SVEIR-B. The stability of a fixed point is influenced by R0. The condition value R0 < 1 resulting in a disease-free equilibrium that is asymptotically stable, whereas the condition R0 > 1 results in an endemic equilibrium being asymptotically stable. Numerical simulations show an increase in the rate of vaccine delivery can decrease the value while increasing the rate of vaccine shrinkage and the incubation rate of each can increase the value.
Sistem Dinamik Penyebaran Coronavirus Disease Dengan Mempertimbangkan Vaksinasi Rasyid, Kamelia; Achmad, Novianita; Nuha, Agusyarif Rezka; Resmawan, Resmawan; Mahmud, Sri Lestari; Nashar, La Ode; Asriadi
JURNAL ILMIAH MATEMATIKA DAN TERAPAN Vol. 20 No. 2 (2023)
Publisher : Program Studi Matematika, Universitas Tadulako

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22487/2540766X.2023.v20.i2.16326

Abstract

Coronavirus Disease (COVID-19) adalah jenis penyakit menular yang disebabkan oleh coronavirus jenis baru yang ditemukan pada tahun 2019 yang selanjutnya disebut Sars-Cov 2 (severe acute respiratory syndrome coronavirus 2). Tujuan penelitian ini adalah membangun model matematika, penentuan titik tetap, mencari analisis kestabilan titik tetap, menentukan nilai bilangan reproduksi dasar membuat simulasi model, dan interpretasi biologis. Hasil analisis terhadap dua titik tetap diperoleh titik kesetimbangan bebas penyakit akan stabil asimtotik apabila R0 < 1, sedangkan titik kesetimbangan endemik akan stabil asimtotik apabila R0 > 1. Selanjutnya, untuk mengilustrasikan dinamika penyebaran penyakit dilakukan simulasi numerik yang memberikan interpretasi bahwa peningkatan pemberian vaksin adalah cara yang bisa dilakukan untuk mengurangi penyebaran penyakit COVID-19.
Co-Authors Abdul Djabar Mohidin Abdul Djabar Mohidin Abdul Wahab Abdullah Abdul, Nur Safitri Achmad, N Adrian Patingki Agus Suryanto Agusyarif Rezka Nuha Ainun Sukmawati Al Idrus Akolo, Ingka Rizkiyani Al Idrus, Ainun Sukmawati Amalia Tatu Amanda Adityaningrum Amelia Tri Rahma Sidik Andi Agung Anissa Dwi Wijayanti Apon Ismail Arianto A. Diu Asriadi Asriadi Asriadi Asriadi Bertu Rianto Takaendengan Binti Mualifatul Rosydah, Binti Mualifatul Boby Rantow Payu Brahim, Annisa Maharani Cabelita Husuna Dangkua, Sri Rahayu Dewi Rahmawati Isa Dewi Rahmawaty Isa Dewinta Mamula Djihad Wungguli Eka, M Endar Hasafah Nugrahani Evi Hulukati Febriolah Lamusu Gaib, Muhammad Bachtiar Gledisya Polontalo Handayani, Rizka Putri Hasan S. Panigoro Hayatun Napsia R. Tangahu Hendra Andrianto Yusuf Husain, Moh Rizal Ibrahim, Rusdianto Ingka Rizkiyani Akolo Ismail Djakaria Isnani Darti Isran K Hasan Jefriyanto Ibrahim Kartin Usman Kue, Hawai Abas La Ode Nashar Lailany Yahya Laita, Nazrilla Hasan LIHAWA, SRIRAPI H Lindrawati Abdjul Mahading, Tria Susilowati Mahmud, Sri Lestari Majid Majid Megawati Megawati Moh. Wahyu Warolemba Mohamad, Regina Muthahharah, Isma Napui, Ismawanti Napui, Ismawanti NISKY IMANSYAH YAHYA Novianita Achmad Nuha, A R Nurdia Walangadi Nurfajria Rahim Nurhalis Hasan Nurmala Niode Nursiya Bito Nurwan Nurwan Nurwan Nurwan, Nurwan Olii, Isran R. Paian Sianturi Pakaya, Revandi S. Pauweni, Khardiyawan A.Y. Perry Zakaria Qur'ani, Fahma Mu'jizatil Rafika Pomalingo Rahasia, Zulaiha Rahasia, Zulaiha Rahmat Hidayat Rahmawati Yusuf RAHMAWATY AHMAD Rahmi, Emli RAJAK, SANDIKA S. Rasmawati Rasmawati Rasyid, Kamelia Rosiana Jupri Rusniwati S. Imran Salmun K. Nasib Saltina, Saltina Sari, Septi Rahmita Sarson W DJ Pomalato Sartika Sari Dewi Selfiani Selfiani, Selfiani Sembiring, Rinawati Sidik, Amelia Tri Rahma Siti Hardiyanti Arsyad Siti Maisaroh Siti Zakiyah Siti Zakiyah Sitti Khadijah Sofyan Nuna Sri Istiyarti Uswatun Chasanah Sri Lestari Mahmud Sri Maryam Mohungo Sri Meylanti S. Ali Sumarno Ismail Susanti Susanti Syamsu Qomar Badu Taki, Febriani Tedy Machmud Tria Susilowati Mahading Vemsi Damopolii WA SALMI WD Rifqah Amalliah Ndangi Yamin Ismail Yusuf, Hendra Andrianto Zian Bula