Claim Missing Document
Check
Articles

Comparing the Prediction of Numeric Patterns on Form C1 Using the K-Nearest Neighbors (K-NN) Method and a Combination of K-Nearest Neighbors (K-NN) with Connected Component Labeling (CCL) Suriani, Uci; Kurniawan, Tri Basuki
Journal of Information System and Informatics Vol 5 No 4 (2023): Journal of Information Systems and Informatics
Publisher : Universitas Bina Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51519/journalisi.v5i4.592

Abstract

Indonesia's elections serve as a cornerstone of its democratic system, with the active participation of its citizens being of paramount importance. To bolster transparency and civic engagement during these elections, the SITUNG system (Election Result Information System) is employed for the tabulation of election results. However, the current tabulation process remains manual, potentially leading to data entry errors and a reduced accuracy of election outcomes. This research endeavor seeks to enhance the efficiency and accuracy of election result tabulation by employing the K-Nearest Neighbors (K-NN) method for recognizing numeric patterns on Form C1, both independently and in combination with Connected Component Labeling (CCL). The K-NN method demonstrates a commendable 60.0% accuracy in recognizing numeric patterns from the original Form C1 data. However, when combined with CCL, the accuracy drops to 51.2%. This research makes a significant contribution by simplifying the tabulation process and improving the accuracy of election results in Indonesia through the application of the K-NN method. The technology is anticipated to fortify democracy by promoting a more transparent and participatory electoral process for the citizens.
ANALISIS WEBSITE JDIH PROVINSI SUMATERA SELATAN DALAM MEMBERIKAN INFORMASI MENGGUNAKAN GOOGLE ANALYTICS Oktariansyah, Oktariansyah; Negara, Edi Surya; Herdiansyah, M. Izman; Kurniawan, Tri Basuki; Saksono, Prihambodo Hendro
Jurnal Teknologi Informasi Mura Vol 16 No 2 (2024): Jurnal Teknologi Informasi Mura DESEMBER
Publisher : LPPM UNIVERSITAS BINA INSAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32767/jti.v16i2.2454

Abstract

The development of information technology has had a major impact on human life, allowing us to receive information quickly. The JDIH website is one of the efforts to provide digital-based information through a website platform that can be accessed quickly to provide information to improve efficiency, accessibility and convenience in providing public services to the people of South Sumatra Province to realize good governance. The purpose of this study is to measure the performance of the JDIH website (Legal Documentation and Information Network) in providing information services to the public. The purpose of this analysis is to evaluate the JDIH Website using Google Analytics Tools to understand the characteristics and statistics of its visitors. The results of the research and analysis that have been carried out by taking JDIH website data with the Google Analytics Algorithm within 28 days have had 2,445 views with an engagement ratio of 61.51%, visitor traffic data from organic search was also obtained, the largest number of which was 628 visitors from Google, Bing, Yahoo. The visitor operating system to access the website uses Windows as many as 418, Android 250, and iOS 47. The largest number of JDIH Website visitors is from Palembang City, which is 382 visitors.
ANALISIS WEBSITE JDIH PROVINSI SUMATERA SELATAN DALAM MEMBERIKAN INFORMASI MENGGUNAKAN GOOGLE ANALYTICS Oktariansyah, Oktariansyah; Negara, Edi Surya; Herdiansyah, M. Izman; Kurniawan, Tri Basuki; Saksono, Prihambodo Hendro
Jurnal Teknologi Informasi Mura Vol 16 No 2 (2024): Jurnal Teknologi Informasi Mura DESEMBER
Publisher : LPPM UNIVERSITAS BINA INSAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32767/jti.v16i2.2454

Abstract

The development of information technology has had a major impact on human life, allowing us to receive information quickly. The JDIH website is one of the efforts to provide digital-based information through a website platform that can be accessed quickly to provide information to improve efficiency, accessibility and convenience in providing public services to the people of South Sumatra Province to realize good governance. The purpose of this study is to measure the performance of the JDIH website (Legal Documentation and Information Network) in providing information services to the public. The purpose of this analysis is to evaluate the JDIH Website using Google Analytics Tools to understand the characteristics and statistics of its visitors. The results of the research and analysis that have been carried out by taking JDIH website data with the Google Analytics Algorithm within 28 days have had 2,445 views with an engagement ratio of 61.51%, visitor traffic data from organic search was also obtained, the largest number of which was 628 visitors from Google, Bing, Yahoo. The visitor operating system to access the website uses Windows as many as 418, Android 250, and iOS 47. The largest number of JDIH Website visitors is from Palembang City, which is 382 visitors.
Fake vs Real Image Detection Using Deep Learning Algorithm Fatoni, Fatoni; Kurniawan, Tri Basuki; Dewi, Deshinta Arrova; Zakaria, Mohd Zaki; Muhayeddin, Abdul Muniif Mohd
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.490

Abstract

The purpose of this research project is to address the growing issues presented by modified visual information by developing a deep learning model for identifying between real and fake images. To enhance accuracy, this project evaluates the effectiveness of deep learning algorithms such as Residual Neural Network (ResNet), Visual Geometry Group 16 (VGG16), and Convolutional Neural Network (CNN) together with Error Level Analysis (ELA) as preprocessing the dataset. The CASIA dataset contains 7,492 real images and 5,124 fake images. The images included are from a wide range of random subjects, including buildings, fruits, animals, and more, providing a comprehensive dataset for model training and validation. This research examined models' effectiveness through experiments, measuring their training and validation accuracies. It comes out with the best accuracy of each model, which is for Convolutional Neural Network (CNN), 94% for training accuracy, and validation accuracy of 92%. For VGG16, with both training and validation accuracy reaching 94%. Lastly, Residual Neural Network (ResNet) demonstrated optimal performance with 95% training accuracy and 93% validation accuracy. This project also constructs a system prototype for practical applications, offering an interface for real-world testing. When integrating into the system prototype, only Residual Neural Network (ResNet) shows consistency and effectiveness when predicting both fake and real images, and this led to the decision to choose ResNet for integration into the system. Furthermore, the project identified several areas for improvement. Firstly, expanding the model comparison for discovering more successful algorithms. Next, improving the dataset preprocessing phase by incorporating filtering or denoising techniques. Lastly, refining the system prototype for greater appeal and user-friendliness has the potential to attract a larger audience.
Deep Learning Based Face Mask Detection System Using MobileNetV2 for Enhanced Health Protocol Compliance Fadly, Fadly; Kurniawan, Tri Basuki; Dewi, Deshinta Arrova; Zakaria, Mohd Zaki; Hisham, Putri Aisha Athira binti
Journal of Applied Data Sciences Vol 5, No 4: DECEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i4.476

Abstract

Personal protective equipment (PPE) is crucial in mitigating the spread of infections within the pharmacy industry, manufacturing sectors, and healthcare facilities. Airborne particles and contaminants can be released during the handling of pharmaceuticals, the operation of machinery, or patient care activities. These particles can be transmitted through close contact with an infected individual or by touching contaminated surfaces and then touching one's face (mouth, nose, or eyes). PPE, including face masks, plays a vital role in minimizing the risk of transmission of infectious diseases. Although mandates for wearing face masks might relax as situations improve and vaccination rates increase, staying prepared for potential future outbreaks and the resurgence of infectious diseases remains important. Therefore, an automated system for face mask detection is important for future use. This research proposes real-time face mask detection by identifying who is (i) not wearing a mask and (ii) wearing a mask. This research presents a deep-learning approach using a pre-trained model, MobileNet-V2. The model is trained on a 10,000 dataset of images of individuals with and without masks. The result shows that the pre-trained MobileNet-V2 model obtained a high accuracy of 98.69% on the testing dataset.
Scalable Machine Learning Approaches for Real-Time Anomaly and Outlier Detection in Streaming Environments Dewi, Deshinta Arrova; Singh, Harprith Kaur Rajinder; Periasamy, Jeyarani; Kurniawan, Tri Basuki; Henderi, Henderi; Hasibuan, M. Said
Journal of Applied Data Sciences Vol 5, No 4: DECEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i4.444

Abstract

The prevalence of streaming data across various sectors poses significant challenges for real-time anomaly detection due to its volume, velocity, and variability. Traditional data processing methods often need to be improved for such dynamic environments, necessitating robust, scalable, and efficient real-time analysis systems. This study compares two advanced machine learning approaches—LSTM autoencoders and Matrix Profile algorithms—to identify the most effective method for anomaly detection in streaming environments using the NYC taxi dataset. Existing literature on anomaly detection in streaming data highlights various methodologies, including statistical tests, window-based techniques, and machine learning models. Traditional methods like the Generalized ESD test have been adapted for streaming data but often require a full historical dataset to function effectively. In contrast, machine learning approaches, particularly those using LSTM networks, are noted for their ability to learn complex patterns and dependencies, offering promising results in real-time applications. In a comparative analysis, LSTM autoencoders significantly outperformed other methods, achieving an F1-score of 0.22 for anomaly detection, notably higher than other techniques. This model demonstrated superior capability in capturing temporal dependencies and complex data patterns, making it highly effective for the dynamic and varied data in the NYC taxi dataset. The LSTM autoencoder's advanced pattern recognition and anomaly detection capabilities confirm its suitability for complex, high-velocity streaming data environments. Future research should explore the integration of LSTM autoencoders with other machine-learning techniques to enhance further the accuracy, scalability, and efficiency of anomaly detection systems. This study advances our understanding of scalable machine-learning approaches and underscores the critical importance of selecting appropriate models based on the specific characteristics and challenges of the data involved.
Deep Learning Incorporated with Augmented Reality Application for Watch Try-On Andri, Andri; Kurniawan, Tri Basuki; Dewi, Deshinta Arrova; Alqudah, Mashal Kasem; Alqudah, Musab Kasim; Zakaria, Mohd Zaki; Hisham, Putri Aisha Athira binti
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.529

Abstract

In evaluating the dynamic landscape of online shopping, the integration of Augmented Reality (AR) technologies has emerged as a transformative force, redefining the way consumers engage with products in virtual environments. This research project investigates the intersection of deep learning and AR in the context of online shopping, with a particular focus on a Watch Try-On application. The experimentation involves the use of SSD MobileNet's models for real-time object detection aimed at enhancing the user experience during online watch shopping. Training both SSD MobileNet's V1 and V2 models through 50,000 iterations, the results reveal intriguing insights into their performance. SSD MobileNet's V1 demonstrated superior results, boasting a mean average precision (mAP) of 0.9725 and a significant reduction in total loss from 0.774 to 0.5405. However, the longer training time of 7 hours and 42 minutes prompted the selection of SSD MobileNet's V2 for real-time applications due to its faster inference capabilities. Extending beyond traditional online shopping experiences, the research explores the potential of AR technologies to revolutionize product visualization and interaction. The choice of the Vuforia model target for the Watch Try-On application showcases the synergy between deep learning and AR, allowing users to virtually try on watches and visualize them in their real-world environment. The application successfully detects users' hands with high accuracy, creating an immersive and visually enriching experience. In conclusion, this project contributes to the ongoing discourse on the fusion of deep learning and AR for online shopping. The exploration of SSD MobileNet's models, coupled with the integration of AR technologies, underscores the potential to elevate the online shopping experience by providing users with dynamic, interactive, and personalized ways to engage with products.
Convolutional Neural Network Based Deep Learning Model for Accurate Classification of Durian Types Diana, Diana; Kurniawan, Tri Basuki; Dewi, Deshinta Arrova; Alqudah, Mashal Kasem; Alqudah, Musab Kasim; Zakari, Mohd Zaki; Fuad, Eyna Fahera Binti Eddie
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.480

Abstract

Durian recognition is significant among fans of the durian community since many people tend to get confused, especially if they are not familiar with durian species, which can lead them to be involved in durian fraud. The development of this prototype can detect and classify durian fruits into three categories, including Musang King, Black Thorn, and D24, which can significantly benefit consumers. The prototype in this research involves training using a dataset of durian images, specifically in Musang King, Black Thorn, and D24 varieties. Preprocessing techniques such as resizing and scaling data are applied to enhance the quality and consistency of the dataset. The models chosen to develop this prototype include VGG-16 and Xception, and each model is compared according to its accuracy percentage. The accuracy outcomes of VGG-16 and Xception models are 56.64% and 92%, respectively. The models used a total of 1,372 images of durian with three classifications. Based on the findings, further enhancement of the CNN models for durian classification can be done by implementing different architectures, techniques, and methods. Moreover, future models can consider real-time image capture and processing capabilities to enhance the practicality of the system for durian consumers. The prototype developed in this study demonstrates the feasibility of using deep learning techniques for accurate and efficient durian classification, paving the way for future advancements in automated fruit grading and quality control systems in the durian industry.
Leveraging Data Analytics for Student Grade Prediction: A Comparative Study of Data Features Misinem, Misinem; Kurniawan, Tri Basuki; Dewi, Deshinta Arrova; Zakaria, Mohd Zaki; Nazmi, Che Mohd Alif
Journal of Applied Data Sciences Vol 5, No 4: DECEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i4.442

Abstract

In educational settings, a persistent challenge lies in accurately identifying and supporting students at risk of underperformance or grade retention. Traditional approaches often fall short by applying generalized interventions that fail to address specific academic needs, leading to ineffective outcomes and increased grade repetition. This study advocates for integrating machine learning algorithms into educational assessment practices to address these limitations. By leveraging historical and current performance data, machine learning models can help identify students needing additional support early in their academic journey, allowing for precise and timely interventions. This research examines the effectiveness of three machine learning algorithms: Naive Bayes, Deep Learning, and Decision Trees. Naive Bayes, known for its simplicity and efficiency, is well-suited for initial data screening. Deep Learning excels at uncovering complex patterns in large datasets, making it ideal for nuanced predictions. Decision Trees, with their interpretable and actionable outputs, provide clear decision paths, making them particularly advantageous for educational applications. Among the models tested, the Decision Tree algorithm demonstrated the highest performance, achieving an accuracy rate of 86.68%. This high precision underscores its suitability for educational contexts where decisions need to be based on reliable, interpretable data. The results strongly support the broader application of Decision Tree analysis in educational practices. By implementing this model, educational administrators can better identify at-risk students, tailor interventions to meet individual needs, and ultimately improve student success rates. This study suggests that Decision Trees could become a vital tool in data-driven strategies to enhance student retention and optimize academic outcomes.
Recommender System for Book Review based on Clustering Algorithms Udariansyah, Devi; Kurniawan, Tri Basuki; Dewi, Deshinta Arrova; Zakaria, Mohd Zaki; Hanan, Nur Syuhana binti Abd
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.492

Abstract

Book reviews show the expression of the reviewers that are to be evaluated and describe the book. Today, the amount of the book is growing rapidly, and it offers people a lot of choices. The recommender system on book reviews is mostly mentioned, and we will recommend a book based on the keyword selected. This study highlights two primary objectives. The first objective is to identify the keywords of the book review, and the last objective is to design and develop a book review analysis visualization using the result of the k-means clustering algorithm. The methodology of this research consists of ten phases, which start with the preliminary study, knowledge acquisition and analysis phase, data collection phase, data pre-processing phase, and modeling phase. The research then continues with the design and implementation, dashboard development, testing and evaluation, and finally, the documentation phase. The data from this study is scraped from Amazon.com and focuses on three genres: Fiction and Fantasy, Mystery and Thriller, and Romance. All the data will be clean before it can be applied to k-means clustering. The result of clustering will define the keywords for every genre and will compare with the keywords for each book that was collected from Amazon.com.
Co-Authors - Kurniawan, - Adi Wijaya Agus Riyanto Alde Alanda, Alde Alqudah, Mashal Kasem Alqudah, Musab Kasim Andri Andri Antoni, Darius Armoogum, Sheeba Armoogum, Vinaye Asro, Asro Astried, Astried Aziz, RZ. Abdul Azmi, Nurhafifi Binti Bappoo, Soodeshna Batumalay, Malathy Bidul, Winarsi J. Bujang, Nurul Shaira Binti Chandra, Anurag Dedy Syamsuar Dewi, Deshinta Arrova Dewi, Deshinta Arrowa Diana Diana Edi Surya Negara Eko Risdianto Fadly Fadly Fatoni, Fatoni Febriyanti Panjaitan Firosha, Ardian Fuad, Eyna Fahera Binti Eddie Habib, Shabana Hadi Syahputra Hanan, Nur Syuhana binti Abd Hasibuan, M.S. Henderi . Hendra Kurniawan Herdiansyah, M. Izman Hidayani, Nieta Hisham, Putri Aisha Athira binti Irianto, Suhendro Y. Irwansyah Irwansyah Ismail, Abdul Azim Bin Isnawijaya, Isnawijaya Joan Angelina Widians, Joan Angelina Kijsomporn, Jureerat Kurniawan, Dendi Lexianingrum, Siti Rahayu Pratami M Said Hasibuan Madjid, Fadel Muhammad Maizary, Ary Mantena, Jeevana Sujitha Mashal Alqudah Melanie, Nicolas Misinem, Misinem Mohd Salikon, Mohd Zaki Motean, Kezhilen Muhamad Akbar Muhammad Islam, Muhammad Muhammad Nasir Muhayeddin, Abdul Muniif Mohd Nathan, Yogeswaran Nazmi, Che Mohd Alif Oktariansyah Oktariansyah, Oktariansyah Onn, Choo Wou Periasamy, Jeyarani Prahartiningsyah, Anggari Ayu Pratiwi, Ayu Okta Praveen, S Phani Puspitasari, Novianti Qisthiano, M Riski R Rizal Isnanto Rahmi Rahmi RR. Ella Evrita Hestiandari Saksono, Prihambodo Hendro Saringat, Zainuri Singh, Harprith Kaur Rajinder Sirisha, Uddagiri Sri Karnila Sugiyarto Surono, Sugiyarto Sulaiman, Agus Sunda Ariana, Sunda Suriani, Uci Syaputra, Hadi Taqwa, Dwi Muhammad Thinakaran, Rajermani Triloka, Joko Udariansyah, Devi Usman Ependi Wibaselppa, Anggawidia Yeh, Ming-Lang Yesi Novaria Kunang Yorman Yupika Maryansyah, Yupika Yusuf, Abi daud Zakari, Mohd Zaki Zakaria, Mohd Zaki