p-Index From 2021 - 2026
8.993
P-Index
This Author published in this journals
All Journal Jurnal Dedikasi Jurnal Ilmu Komputer Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) JUTI: Jurnal Ilmiah Teknologi Informasi Jurnal Simantec Jurnal sistem informasi, Teknologi informasi dan komputer Jurnal Teknologi Informasi dan Ilmu Komputer SMATIKA Proceeding of the Electrical Engineering Computer Science and Informatics Fountain of Informatics Journal Sistemasi: Jurnal Sistem Informasi Jurnal Teknologi dan Sistem Komputer JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Jurnal Informatika Jurnal Pilar Nusa Mandiri Network Engineering Research Operation [NERO] Jurnal Komputer Terapan Syntax Literate: Jurnal Ilmiah Indonesia Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control SINTECH (Science and Information Technology) Journal METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) JURTEKSI EDUMATIC: Jurnal Pendidikan Informatika Jurnal Informatika Kaputama (JIK) JISKa (Jurnal Informatika Sunan Kalijaga) Journal of Electronics, Electromedical Engineering, and Medical Informatics Jurnal Repositor Community Development Journal: Jurnal Pengabdian Masyarakat Jurnal Teknik Informatika (JUTIF) Jurnal Perempuan & Anak Jurnal Dinamika Informatika (JDI) Makara Journal of Technology Jurnal Sistem Informasi Jurnal Informatika: Jurnal Pengembangan IT
Claim Missing Document
Check
Articles

Penerapan Model EfficientNetV2-B0 pada Benchmark IP102 Dataset untuk Menyelesaikan Masalah Klasifikasi Hama Serangga Ahmad Hanif Nurfauzi; Yufis Azhar; Didih Rizki Chandranegara
Jurnal Repositor Vol 5 No 3 (2023): Agustus 2023
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/repositor.v5i3.1583

Abstract

Hama serangga merupakan masalah yang sering di hadapi oleh petani. Karena ukurannya yang kecil dan jenis spesiesnya banyak. tak jarang petanipun kesulitan untuk menjaga tanaman mereka dari ancaman hama serangga karena penanganannya tidak memakai satu obat, melainkan dengan mencocokan spesies serangga. Sehingga karena banyaknya obat pembasmi, petanipun bingung obat mana yang tepat. Di dalam penelitian ini, telah di coba penggunaan metode deep learning arsitektur model EfficientNetV2 B0 pada dataset IP102 yang berkarakteristik imbalance dan ada jenis serangga yang identik antara satu dengan yang lain. Penelitian ini bertujuan untuk mengeksplorasi kemungkinan model kecil yang dapat di implementasikan di smartphone atau IOT yang mudah di bawa ke ladang pertanian tanpa tergantung pada internet. Model terbaik yang berhasil dibuat memperoleh akurasi 51% dengan F1-Score 50.14%
Deep Learning Implementation using Convolutional Neural Network for Alzheimer’s Classification Adhigana Priyatama; Zamah Sari; Yufis Azhar
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 2 (2023): April 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i2.4707

Abstract

Alzheimer's disease is the most common cause of dementia. Dementia refers to brain symptoms such as memory loss, difficulty thinking and problem solving and even speaking. This stage of development of neuropsychiatric symptoms is usually examined using magnetic resonance images (MRI) of the brain. The detection of Alzheimer's disease from data such as MRI using machine learning has been the subject of research in recent years. This technology has facilitated the work of medical experts and accelerated the medical process. In this study we target the classification of Alzheimer's disease images using convolutional neural network (CNN) and transfer learning (VGG16 and VGG19). The objective of this study is to classify Alzheimer's disease images into four classes that are recognized by medical experts and the results of this study are several evaluation metrics. Through experiments conducted on the dataset, this research has proven that the algorithm used is able to classify MRI of Alzheimer's disease into four classes known to medical experts. The accuracy of the first CNN model is 75.01%, the second VGG16 model is 80.10% and the third VGG19 model is 80.28%.
Logistic Regression Using Hyperparameter Optimization on COVID-19 Patients’ Vital Status Vinna Rahmayanti Setyaning Nastiti; Yufis Azhar; Riska Septiana Putri
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 3 (2023): Juni 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i3.4868

Abstract

This study aims to classify COVID-19 patients based on the results of their hematology tests. Hematology test results have been shown to be useful in identifying the severity and risk of COVID-19 patients. Specifically, this study focuses on classifying COVID-19 patients based on their vital status, namely Deceased and Alive. The dataset used in this study contains four variables: white blood cells (WBC), neutrophils (NEU), lymphocytes (LYM), and Neutrophil Lymphocyte Ratio (NLR). Logistic Regression algorithm was used to solve the problem, and hyperparameter optimization was implemented to obtain the best model performance. The objective of this study was to build the best parameter in classifying the patients’ vital status. The proposed model achieved an accuracy score of 78%, which is the best performance among the tested models. The results of this study provide a key component for decision making in hospitals, as it provides a way to quickly and accurately identify the vital status of COVID-19 patients. This study has important implications for managing the COVID-19 pandemic and should be of interest to researchers and practitioners in the field.
Aplikasi Wireless Sensor Network untuk Sistem Monitoring dan Klasifikasi Kualitas Udara Tri Fidrian Arya; Mahar Faiqurahman; Yufis Azhar
Jurnal Sistem Informasi Vol. 14 No. 2 (2018): Jurnal Sistem Informasi (Journal of Information System)
Publisher : Faculty of Computer Science Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (904.932 KB) | DOI: 10.21609/jsi.v14i2.652

Abstract

Indonesia merupakan salah satu negara yang bergerak di sektor industri, hal tersebut memungkinkan lingkungan hidup termasuk kualitas udara. Polusi udara yang dikeluarkan dari cerobong asap kawasan industri tidak dapat dilakukan dengan baik maka akan berdampak buruk pada kesehatan manusia. Pemantauan kualitas udara yang digunakan saat ini yaitu hanya terdapat satu alat saja yang digunakan untuk melakukan monitoring terhadap suatu cakupan lokasi tertentu, sehingga akan kurang sesuai untuk menggambarkan kondisi kualitas udara yang ada pada suatu cakupan lokasi tersebut. Sementara untuk instalasi lebih dari satu alat akan membutuhkan biaya yang besar. Pada penelitian ini diaplikasikan konsep wireless sensor network (WSN) untuk pemantauan kualitas udara dengan pemasangan node sensor lebih dari satu perangkat pada lokasi tertentu dan terdapat satu sink yang bertindak untuk mengumpulkan data dari node sensor dan mengirimkannya ke server. Data kualitas udara yang didapatkan oleh node sensor kemudian diklasifikasikan menggunakan metode klasifikasi pada data mining yaitu k-nearest neighbor (K-NN). Sebelum dilakukan klasifikasi menggunakan K-NN, dilakukan normalisasi data untuk penyamaan skala datanya, didapatkan normalisasi decimal scaling yang memiliki performansi yang baik untuk data kualitas udara. Nilai k yang digunakan untuk klasifikasi K-NN yaitu 5. Didapatkan tingkat akurasi yang dihasilkan oleh sistem sebesar 94,28%, presisi sebesar 85,16% dan recall sebesar 93,35%.
PREDIKSI PENGARUH JUMLAH BUS TERHADAP JUMLAH PENUMPANG KHUSUSNYA UNTUK DAERAH IBU KOTA JAKARTA Noviani Sintia Duwi Trisna; Andhika Ade Verdiyanto; Yufis Azhar
Jurnal Informatika Kaputama (JIK) Vol 4 No 2 (2020): Volume 4, Nomor 2, Juli 2020
Publisher : STMIK KAPUTAMA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59697/jik.v4i2.339

Abstract

Transportasi adalah sebuah proses pengangkutan atau pemindahan manusia, hewan atau barang dari suatu tempat ke tempat yang lain. Sedangkan bus adalah salah satu jenis alat transportasi darat yang memiliki fungsi untuk membawa penumpang dari suatu tempat ke tempat yang lain dan mampu menampung kurang lebih 65 penumpang. Bus juga merupakan salah satu transportasi umum yang sering digunakan oleh masyarakat Ibu Kota Jakarta, dikarenakan biaya untuk menaiki bus bisa dibilang murah dari pada alat transportasi lainnya. Jakarta memiliki penduduk sekitar 10.557.810 jiwa dengan tingkat kemacetan sebesar 53%. Tujuan penelitian ini memiliki tujuan untuk mengetahui pengaruh dari bnayaknya jumlah bus yang beroprasi terhadap banyaknya jumlah penumpang guna untuk meminimalisir kemacetan atau antrian di setiap zona pemberhentian atau zona pengangkutan dengan menggunakan metode Polynomial Regression. Dari hasil penelitian ini didapatkan hasil korelasi sebesar 0,86 yang memiliki arti bahwa antara jumlah banyaknya bus memiliki korelasi yang tingggi terhadap jumlah banyaknya penumpang.
Prediksi Data Time-series menggunakan Jaringan Syaraf Tiruan Algoritma Backpropagation Pada Kasus Prediksi Permintaan Beras Gita Indah Marthasari; Silcillya Ayu Astiti; Yufis Azhar
Jurnal Informatika: Jurnal Pengembangan IT Vol 6, No 3 (2021): JPIT, September 2021
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v6i3.2627

Abstract

Recently, Indonesia, as a country where the majority of the population chooses rice as the primary food source, gets a decline in the rice consumption patterns, which resulted in reduced demand for rice that should have been stable. The decrease of rice purchasing power impacts several rice suppliers, commonly referred to as rice agents, to buy rice from rice production companies. Therefore, prediction of rice stock is essential to do. This paper aims to apply the backpropagation neural network method to forecast the amount of rice demand. The data used in the study is time-series data in the form of the number of requests for rice as much as 609 data from two types of rice. The modeling scenario in this study applies one to five hidden layers with a different number of hidden neurons in each experiment. The elastic net regularization method was applied after the data denormalization process to improve the quality of the resulting model. Based on the experiments, obtained the best model on architecture 7-50-200-300-250-300-1 with MSE = 0.001278, RMSE = 0.301950 in the training process and MSE results = 0.002391, RMSE = 0.204972 in the testing process.
Pneumonia Diagnosis Through Deep Learning: ResNet50v2 Model Implementation Yufis Azhar; Zamah Sari; Wahyu Priyo Wicaksono
Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI Vol. 13 No. 2 (2024)
Publisher : Prodi Pendidikan Teknik Informatika Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/janapati.v13i2.72068

Abstract

Pneumonia is a significant global health concern, particularly affecting young children and the elderly. It is a lung infection caused by bacteria, viruses, fungi, or parasites, leading to the alveoli filling with pus or fluid. This study addresses the challenge of accurately diagnosing pneumonia using chest X-ray images, a process traditionally dependent on the expertise of radiologists. The reliance on radiologists results in lengthy diagnosis times and high costs, particularly in regions with a shortage of medical professionals. This research presents a deep-learning approach to automate the classification of pneumonia using the ResNet50v2 model, which has been pre-trained on the ImageNet dataset. The dataset used in this study, obtained from the Guangzhou Women and Children’s Medical Center, comprises 5,856 images, with 1,583 normal and 4,273 pneumonia cases. The images were preprocessed and augmented to enhance the model's robustness. The proposed model achieved an accuracy of 94%, demonstrating its potential in clinical settings to assist in the rapid and reliable diagnosis of pneumonia. This study contributes to the growing body of research in medical image analysis by employing a pre-trained ResNet50v2 model. It highlights the importance of leveraging advanced machine-learning techniques to improve diagnostic accuracy and efficiency.
DETECTION OF LEAF SPOT DISEASE IN OIL PALM SEEDLINGS USING CONVOLUTIONAL NEURAL NETWORK METHOD Yufis Azhar; Muhammad Shalahuddin Zulva
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 10, No 2 (2024): Maret 2024
Publisher : STMIK Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v10i2.2903

Abstract

Abstract: This research aims to develop a method for detecting leaf spot disease in oil palm seedlings using Convolutional Neural Network (CNN). Leaf spot disease in oil palm seedlings can hinder growth and production. CNN has proven effective in image processing and classification, particularly in plant disease detection. In this study, we utilized a dataset of images containing oil palm seedling leaves infected with leaf spot disease and healthy leaves. We performed data processing, built a CNN model, and conducted hyperparameter tuning. The test results demonstrate that the developed CNN model achieves high accuracy in recognizing and distinguishing between oil palm seedling leaves infected with leaf spot disease and healthy ones. This research contributes to the development of plant disease detection technology that can support economic growth in the oil palm plantation sector. Keywords: Convolutional Neural Network, image processing, leaf spot disease detection, oil palm seedlings. Abstrak: Penelitian ini bertujuan untuk mengembangkan metode deteksi penyakit bercak pada bibit kelapa sawit menggunakan Convolutional Neural Network (CNN). Bibit kelapa sawit yang terinfeksi penyakit bercak dapat menghambat pertumbuhan dan produksi kelapa sawit. Metode CNN telah terbukti efektif dalam pengolahan citra dan klasifikasi, khususnya dalam deteksi penyakit pada tanaman. Dalam penelitian ini, kami menggunakan dataset citra daun bibit kelapa sawit yang terinfeksi penyakit bercak dan yang normal. Kami melakukan processing data, membangun model CNN, dan melakukan tuning hyperparameter. Hasil pengujian menunjukkan bahwa model CNN yang dikembangkan memiliki akurasi yang tinggi dalam mengenali dan membedakan citra daun bibit kelapa sawit yang terinfeksi penyakit bercak dan yang normal. Penelitian ini memberikan kontribusi dalam pengembangan teknologi deteksi penyakit tanaman yang dapat mendukung pertumbuhan ekonomi di sektor perkebunan kelapa sawit. Kata kunci: bibit kelapa sawit, Convolutional Neural Network, deteksi penyakit bercak,  pengolahan citra.
COMPARISON OF DATA MINING CLASSIFICATION METHODS TO DETECT HEART DISEASE Putri, Ira Ekanda; Rahmawati, Dwi; Azhar, Yufis
Jurnal Pilar Nusa Mandiri Vol 16 No 2 (2020): Pilar Nusa Mandiri : Journal of Computing and Information System Publishing Peri
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/pilar.v16i2.1388

Abstract

Heart disease is a disease that is deadly and must be treated as soon as possible because if it is too late, it has a big risk to one's life. Factors causing the disease of the heart is the use of tobacco, the physical who are less active, and an unhealthy diet. With existing data, the study is to compare the three algorithms, namely: Naive Bayes, Logistic Regression, and Support Vector Machine (SVM) which aims to determine the level of accuracy of the best of the dataset that is used to predict disease heart. This research produces the best accuracy of 87%, which is generated by the Naive Bayes method
Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Stroke Azhar, Yufis; Firdausy, Aidia Khoiriyah; Amelia, Putri Juli
SINTECH (Science and Information Technology) Journal Vol. 5 No. 2 (2022): SINTECH Journal Edition Oktober 2022
Publisher : Prahasta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31598/sintechjournal.v5i2.1222

Abstract

Data mining is often called knowledge Discovery in Database (KDD). Data mining is usually used to improve future decision making based on information obtained from the past. For example for prediction, estimation, association, clustering, and description. Stroke is the second most deadly disease in the world according to WHO. The sufferer has an injury to the nervous system. Because of this, health experts, especially in the field of nursing, need special attention. Currently, the development of the Industrial Revolution Era 4.0 is collaborating in the fieldsof technology and health science so that it becomes something useful by using Machine Learning. There are so many benefits that are used in predicting several diseases that can be anticipated. In this study the dataset is dividedinto 2 parts, namely training data and testing data using split validation. Based on the results of the test that have been carried out in this study, the algorithm that has the highest accuracyvalue on balanced data is Logistic Regression with an accuracy rate of 75.65%, while for unbalanced data, the algorithm that has the highest accuracy results is Logistic Regression, Random Forest, SVM, and KNN with an accuracy rate of 98.63%. This testing process is carried out to identify stroke with data mining algorithms
Co-Authors A.A. Ketut Agung Cahyawan W Achmad Fauzi Saksenata Adhigana Priyatama Aditya Dwi Maryanto Adnan Burhan Hidayat Kiat Afdian, Riz Agus Eko Minarno Agus Zainal Arifin Ahmad Annas Al Hakim Ahmad Darman Huri Ahmad Hanif Nurfauzi Ahmadu Kajukaro Akbi, Denar Regata Akmal Muhammad Naim Al asqalani, Sheila Fitria Al-rizki, Muhammad Andi Alfin Yusriansyah Ali Sofyan Kholimi Amelia, Putri Juli Ananda Ayu Dianti Andhika Ade Verdiyanto Andhika Pranadipa Andi Shafira Dyah Kurniasari Andreawana, Andreawana Andriani Eka Pramudita Annisa Annisa Annisa Fitria Nurjannah Aria Maulana Aripa, Laofin Aris Muhandisin arrafiq, ubay hakim Arya, Tri Fidrian Audi Bayu Yuliawan Aulia Ligar Salma Hanani Bagas Aji Aprian Basuki, Setio Bayu Yuliawan, Audi Bintang, Rahina Chandranegara, Didih Rizki Chita Nauly Harahap Christian Sri Kusuma Aditya Christian Sri kusuma Aditya, Christian Sri kusuma Cokro Mandiri, Mochammad Hazmi Denny Risky Delis Putra Dewi Agfiannisa Diana Purwitasari Doni Yulianto Dwi Anggraini Puspita Rahayu Dwi Kurnia Puspitaningrum DWI RAHMAWATI Dyah Anitia Dyah Ayu Irianti Eko Budi Cahyono Elsyah Ayuningrum Elza Norazizah Evi Febrion Rahayuningtyas Fahrur Rozi Faizun Nuril Hikmah Faldo Fajri Afrinanto Fatimah Defina Setiti Alhamdani Fenny Linsisca Putri Feny Novia Rahayu Feranandah Firdausi Ferin Reviantika Ferin Reviantika Fikri, Ulul Fiqri Azmi Fachir Firdausi, Feranandah Firdausita, Nuris Sabila Firdausy, Aidia Khoiriyah Firdhansyah Abubekar Fitri Bimantoro Galang Aji Mahesa Galang Aji Mahesa Gita Indah Marthasari Hanung Adi Nugroho Haqim, Gilang Nuril Hardianto Wibowo Haris Diyaul Fata Harmanto, Dani Hasanuddin, Muhammad Yusril Hermansyah Adi Saputra Hiu Adam Abdullah Hussin Agung Wijaya Ibrahim, Zaidah Ilham Rahmana Syihad Imam Halimi Irfan, Muhammad Ivan Dwi Nugraha Jahtra Hidayatullah Jalu Nusantoro Khoirir Rosikin Kiki Ratna Sari Lina Dwi Yulianti Linggar Bagas Saputro Lusianti, Aaliyah M Syawaluddin Putra Jaya M. Randy Anugerah Mahar Faiqurahman Maskur Maskur Maskur Maskur Masluha, Ida Maulina Balqis Meilina Agustina Mentari Mas'ama Safitri Moch Shandy Tsalasa Putra Moch. Chamdani Mustaqim Mochammad Hazmi Cokro Mandiri Moh. Badris Sholeh Rahmatullah Muhammad Aji Purnama Wibowo Muhammad Al Reza Fahlopy Muhammad Andi Al-Rizki Muhammad Athaillah Muhammad Bima Al Fayyadl Muhammad Fadliansyah Muhammad Hussein Muhammad Misbahul Azis Muhammad Nuchfi Fadlurrahman Muhammad Riadi Muhammad Rifal Alfarizy Muhammad Rivaldi Asyhari Muhammad Rizki Muhammad Rizky Iman Permana Muhammad Shalahuddin Zulva Mujaddid Izzul Fikri Nabillah Annisa Rahmayanti Nina Mauliana Noor Fajriah Novandha Yudyanto Noviani Sintia Duwi Trisna Nur Hayatin Nur Putri Hidayah Nuryasin, Ilyas Oktavia Dwi Megawati Otto Endarto Prakoso, Rahmat Pratama, Dhimas Rama Anthony Navy Putri, Ira Ekanda Rahma Ningsih Rangga Kurnia Putra Wiratama Ratna Sari Rifky Ahmad Saputra Riksa Adenia Riska Septiana Putri Rista Azizah Arilya Riz Afdian Rizal Arya Suseno Rizal Rakhman Mustafa S, Vinna Rahmayanti Saputri, Indah Sari Wahyunita Sari, Veronica Retno Sari, Zamah Satrio Hadi Wijoyo Septiyan Andika Isanta Setiono, Fauzan Adrivano Shintya Larasabi , Auliya Tara Silcillya Ayu Astiti Siti Maghfiroh Sucia, Dara Suryani Rachmawati Suseno, Jody Ririt Krido Susi Ekawati Syaifuddin Syaifuddin Syaifudin Zuhri Taufik Nurahman Tri Fidrian Arya Trifebi Shina Sabrila Trifebi Shina Sabrila Ujilast, Novia Adelia Ulfah Nur Oktaviana Veronica Retno Sari Vinna Utami Putri Wahyu Priyo Wicaksono Wana Salam Labibah Wicaksono, Galih Wasis Widya Rizka Ulul Fadilah Wildan Suharso Wildan Suharso Wildan Suharso Yesicha Amilia Putri Yuda Munarko Yudhono Witanto Yurizal Rizqon Rifani Yusuf, Achmad Zamah Sari Zulva, Muhammad Shalahuddin