Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Pattimura International Journal of Mathematics (PIJMath)

Application of Classification Data Mining Technique for Pattern Analysis of Student Graduation Data with Emerging Pattern Method Handayani, Aditya; Satyahadewi, Neva; Perdana, Hendra
Pattimura International Journal of Mathematics (PIJMath) Vol 2 No 1 (2023): Pattimura International Journal of Mathematics (PIJMath)
Publisher : Pattimura University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/pijmathvol2iss1pp01-06

Abstract

Data mining has been applied in various fields of life because it is very helpful in extracting information from large data sets. Student graduation data is one example of data that can be extracted for information and become a recommendation. This study used a classification data mining technique to extract information from the student graduation data. The classification technique used was the Emerging Pattern method to search for patterns in the student graduation data. The data in this study were graduation data for students of the Statistics Study Program, Faculty of Mathematics and Natural Sciences, Tanjungpura University, from 2013-2018. The sample data used amounted to 186 records. Attributes used in this study include as many as four attributes, including gender, batch, GPA, and TUTEP scores. This research began by finding the class and frequency values obtained. It was continued by calculating each item set's support, growth rate, and confidence values. This study obtained the highest confidence value among all the attributes owned, namely 91% in the 2013 batch itemized list and the 2018 batch. Female students dominated the class attribute. TUTEP dominated the TUTEP value attribute with a score of 425, and the GPA attribute of 3.51-4.00 dominated the class with a confidence value of 60%.
Comparison of Adaboost Application to C4.5 and C5.0 Algorithms in Student Graduation Classification Crismayella, Yuveinsiana; Satyahadewi, Neva; Perdana, Hendra
Pattimura International Journal of Mathematics (PIJMath) Vol 2 No 1 (2023): Pattimura International Journal of Mathematics (PIJMath)
Publisher : Pattimura University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/pijmathvol2iss1pp07-16

Abstract

Students become a benchmark used to assess quality and evaluate college learning plans. Therefore, students who graduate not on time can have an effect on accreditation assessment. The characteristics of students who graduate on time or not on time in determining student graduation can be analyzed using classification techniques in data mining, namely the C4.5 and C5.0 algorithms. The purpose of this study is to compare the application of the Adaboost Algorithm to the C4.5 and C5.0 Algorithms in the classification of student graduation. The data used is the graduation data of students of the Statistics Study Program at Tanjungpura University Period I of the 2017/2018 Academic Year to Period II of the 2022/2023 Academic Year. The analysis begins by calculating the entropy, gain and gain ratio values. After that, each data was given the same initial weight and iterated 100 times. Based on the classification results using the C5.0 Algorithm, the attribute that has the highest gain ratio value is school accreditation, meaning that the school accreditation attribute has the most influence in the classification of student graduation. The application of the Adaboost Algorithm to the C5.0 Algorithm is better than the C4.5 Algorithm in classifying the graduation of students of the Untan Statistics Study Program. The Adaboost algorithm was able to increase the accuracy of the C5.0 Algorithm by 12.14%. While in the C4.5 Algorithm, the Adaboost Algorithm increases accuracy by 10.71%.
Determination of the Annual Pension Fund Premium for Joint-Life Status Using the Aggregate Cost Method syuradi, Syuradi; Satyahadewi, Neva; Perdana, Hendra
Pattimura International Journal of Mathematics (PIJMath) Vol 2 No 2 (2023): Pattimura International Journal of Mathematics (PIJMath)
Publisher : Pattimura University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/pijmathvol2iss2pp71-78

Abstract

A pension fund is one of the responsibilities of an institution or company for all employees during their working life. In pension fund insurance, several agreements must be agreed upon by the insured and the insurer for the agreement, namely the premium. The premium to be paid by the insured (employee) of the pension fund insurance must adjust to the income earned, so that the premium to pay does not burden the insured. This study aims to determine the annual pension fund premium amount that must pay use the Aggregate Cost method in the joint-life case. The case study uses information from a husband and wife as civil servants with a husband class III B and wife III A participating in a pension program with a retirement age limit of 58 years (r = 58). The husband (insured x) was 28 years old, and the wife (insured y) was 24 when they started working and joined the pension program. The result of calculating the value of the annual pension fund insurance premium that must pay use the Aggregate Cost method is Rp.41,440,163. If the husband's age is lower than the wife's (x=24, y=28), then the value of the premium paid is more significant than when the husband's age is higher than the wife's (x=28, y=24), which is IDR 41,594,217. That is because the husband's working period is more extended than the wife's, while the chance of death for men is higher than for women. Meanwhile, premiums producing if the husband and wife are of the same age, which is cheaper than when the husband and wife are of different ages
Co-Authors Al Amin Alatin, Isam Aldien, Royan Gustio Alex Sander Almazmar, Giatul Khodijah Hodijah Andani, Wirda Andi Hairil Alimuddin Anggi Putri Dewi Anggi, Muhamad Anis Fakhrunnisa Annisa Fitri Antoni, Frans Xavier Natalius Apriliyani, Techa Aprizkiyandari, Siti Ariady Zulkarnain Arsyi, Fritzgerald Muhammad Assa Trissia Rizal Atikasari, Awang Atlantic, Virginnia Aulia Puteri Amari Azura, Tina Calissta, Leanna Belva Cesoria, Yola Zerlinda Crismayella, Yuveinsiana Dadan Kusnandar Dadan Kusnandar Dadan Kusnandar Dadan Zaliluddin Debataraja, Naomi Nessyana Dedi Rosadi Deni Wardani Dinda Lestari Dwi Nining Indrasari Dzakirah, Nasya Rabbi Eka Rizki Wahyuni Elga Fitaloka Endah Saraswi Ersawahyuni, Aisna Evi Noviani Evy Sulistianingsih Faizah, Putri Alya Nur Fajar, Arif Nur Fallah, Khalishah Ghina Febriani, Nindy Febriani, Rani Febriyanto, Ferdy Fery Prastio Fidianty, Fadilla Firhan Januardi Firman Saputra Fortuna, Nia Fitriana Gilang Habibie Gunawan, Sucipto Hafifah, Nanda Handayani, Aditya Hapipah, Liza Darojatul Hariadi, Wahyudio Shaney Fikri Harnanta, Nabila Izza Hasanah, Kutsiatul Hasanuddin Hasanuddin Helmi Helmi Hidayat, Rani Lestari HUDA, NUR’AINUL MIFTAHUL Huriyah, Syifa Khansa Iman Sanjaya Imanni, Rahmania Andarini Hatti Imro'ah, Nurfitri IMRO’AH, NURFITRI Imtiyaz, Widad Indriani, Maria Meilinda Ira Mona Irwanto, Dicky Ismi Adam Jajad Sudrajat Jawani Jawani Juniarti, Leni Khabib Mustofa Laksono Trisnantoro Lilit Tamara Dinta Lisa Lestari M. Deny Hafizzul Muttaqin Ma’ruf, Ikhwan Maisarah Maisarah Margaretha, Ledy Claudia Mariana Yopi Mariatul Kiftiah Martha, Shantika Marwalida Rachmadiar Maulida Amanasari Mega Tri Junika Mida Mida Millennia Taraly Misrawi Misrawi Muhamad Ikbal Muhammad Ahyar Muhammad fauzan Muhardi Muhtadi, Radhi Mursyidah, Lailatul Mutiara Nurisma Rahmadhani Nabilah, Niken Aushaf Nanda Ayuni Nanda Shalsadilla Naomi Nessyana Debataraja Naomi Nessyana Debataraja Neva Satyahadewi Novita, Irene Nugrahaeni, Indah Nur Asiska Nur Azmi Nurfitri Imro'ah Nurfitri Imro’ah Nurhanifa, Nurhanifa Nurin Hafizah Nurmaulia Ningsih Nurul Huda Padilah, Ariski Paisal Paisal Pinasari, Repi Pitriani Pitriani Pranata Anggi Puji Ardiningsih Puspita, Risma Putri, Vinna Septyara Qalbi Aliklas Rafika Aufa Hasibuan Rahman, Tri Wanda Rahmania Andarini Hatti Imanni Rahmasari, Yulia Ramadhan, Nanda Ratna Nursariyani Ratna Sari Dewi Reni Unaeni Retnani, Hani Dwi Ria Fuji Astuti Rina Rina Risa Nofiani Risko, Risko Rivaldo, Rendi Rizki, Setyo Wira Robbiati, Dian Roeswandi, Irine Fajrin Rofatunnisa, Sifa Sadikin, Utin Azwa Sayhani Salsabila, Hana Samson Samson Santika Santika Sasqia Aklysta Antaristi Sesilisvana, Nevil Setyo Wir Rizki Setyo Wira Rizki Setyo Wira Rizki Setyo Wira Rizki Shantika Martha Shantika Martha Shantika Martha Silvia Andriany Sinaga, Steven Jansen Sindia, Eri Sintia Margun Siti Julaeha, Siti Siti Septiani Rahayu Putri Solly Aryza Suci Angriani Suhardi Suprianto, Okto syuradi, Syuradi Tamtama, Ray Taraly, Inggriani Millennia Thariq Thariq Tiara, Dinda Titania Aurellia Trifaiza, Fadhela Wafiq Nurhaliza Wahyu Diyan Ramadana Wilda Ariani Wira Fujiyanto Enizar Wirda Andani Wirdha Eryani Yogi, Vinsensius Yohane, Novi Yonatan, Yulianus Yopi Saputra Yudhi Yumna Siska Fitriyani Yundari, Yundari Yundari, Yundari Yustosio, Darwis Yuveinsiana Crismayella Zahidah, Zahra