p-Index From 2020 - 2025
11.066
P-Index
This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Manajemen dan Organisasi FORUM STATISTIKA DAN KOMPUTASI Pythagoras: Jurnal Matematika dan Pendidikan Matematika Media Statistika Jurnal Ilmu Dasar Jurnal Manajemen Teknologi Jurnal Agro Ekonomi JAM : Jurnal Aplikasi Manajemen Indonesian Journal of Business and Entrepreneurship (IJBE) JUITA : Jurnal Informatika Indonesian Journal of Biotechnology Jurnal Aplikasi Bisnis dan Manajemen (JABM) E-Journal Jurnal Manajemen. AL ISHLAH Jurnal Pendidikan International Research Journal of Business Studies (E-Journal) Jurnal Penelitian Pertanian Tanaman Pangan BAREKENG: Jurnal Ilmu Matematika dan Terapan Jurnal Ekonomi Integra JTAM (Jurnal Teori dan Aplikasi Matematika) Limits: Journal of Mathematics and Its Applications JURNAL AGRONIDA Saintifik : Jurnal Matematika, Sains, dan Pembelajarannya ComTech: Computer, Mathematics and Engineering Applications Jurnal Manajemen Inferensi Jurnal Agro Ekonomi International Journal of Advances in Data and Information Systems Journal of Data Science and Its Applications Jurnal Teknik Informatika (JUTIF) JURNAL ILMIAH GLOBAL EDUCATION Xplore: Journal of Statistics STATISTIKA Asian Journal of Social and Humanities Scientific Journal of Informatics Journal of Mathematics, Computation and Statistics (JMATHCOS) International Research Journal of Business Studies Indonesian Journal of Statistics and Its Applications Limits: Journal of Mathematics and Its Applications
Claim Missing Document
Check
Articles

LEADERSHIP STYLE, ORGANIZATIONAL COMMUNICATION, AND EMPLOYEE PARTICIPATION TO INCREASE EMPLOYEE READINESS IN FACING CHANGES IN BUSINESS ENVIRONMENT Puspasari, Novia; Sukmawati, Anggraini; Sumertajaya, I Made
Jurnal Aplikasi Manajemen Vol. 15 No. 4 (2017)
Publisher : Universitas Brawijaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (167.703 KB) | DOI: 10.21776/ub.jam2017.015.04.12

Abstract

The aim of this study is to analyze the influence of leadership style, organizational communication, and employee participation on employee readiness for changes in business environment at Small-Medium Enterprises (SMEs) in creative economy industrial sector, in partnership program of PT Pertamina (Persero) with criteria of having been established for at least 5 years, employing 20-99 personnels. Based on the criteria, only 3 SMEs meet the requirements; they are located in Bogor, Depok and Jakarta. This study involved 40 people, consisting of SME owners and employees. This study conducted descriptive analysis as well as Structural Equation Modeling PLS. The study resulted that both leadership style and organizational communication brought positive impact directly to employee participation, as well as positive impact indirectly to employee readiness for changes in business environment. In addition, employee participation also created direct positive influence to employee readiness for changes in business environment. The study results also suggest owners to actively communicate regarding planning for changes to improve employee participation. Nonetheless, both SME owners and PT Pertamina (Persero) shall continuously conduct relevant trainings.
Perancangan Balance Scorecard untuk Mengembangkan Modal Insani dan Meningkatkan Kinerja pada Usaha Kecil dan Menengah (UKM) Erwina, .; Sukmawati, Anggraini; Sumertajaya, I Made
Jurnal Aplikasi Manajemen Vol. 13 No. 3 (2015)
Publisher : Universitas Brawijaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/

Abstract

The success of SMEs could be seen from their performance. However, until now theperformance measurement still use the traditional way in which views the performance onlyfrom the financial perspective. Therefore, it needs a new performance measurement systemwhich is balance scorecard. Based on the problems, this study aimed at designing a performancemeasurement in SMEs with balance scorecard approach as an attempt to develop thehuman capital and to improve the SMEs'performance. The study was conducted in BogorSMEs. The sampling technique was carried out using purposive sampling. The samples ofthis study were SMEs owner, related official, and the expert of SMEs and BSC. The datatabulation and analysis were used literature study, focus group discussion, and in-depthinterview. The result of the study formulated eight strategic targets from four perspectivesand 15 key performance indicators to measure performance in SMEs.
PENDEKATAN GEOGRAPHICALLY WEIGHTED ZERO INFLATED POISSON REGRESSION (GWZIPR) DENGAN PEMBOBOT FIXED BISQUARE KERNEL PADA KASUS DIFTERI DI INDONESIA Ismah, Ismah; Sumertajaya, I Made; Djuraidah, Anik; Fitrianto, Anwar
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 14 No 1 (2020): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (679.128 KB) | DOI: 10.30598/barekengvol14iss1pp039-046

Abstract

The number of deaths due to diphtheria is counts data and there is a considerable presence of zeros (excess zeros). Besides, data on the spread of disease are generally geographically oriented or observed in each particular region, which is a type of spatial data. Geographically Weighted Zero Inflated Poisson Regression (GWZIPR), as the development of Geographically Weighted Regression (GWR) and Zero Inflated Poisson (ZIP) models will be used as a model in processing provincial diphtheria data in Indonesia in 2018, with the independent variable percentage of diphtheria cases (X1), percentage of vaccinated numbers (X2) and percentage of the population (X3) in each province in Indonesia. Estimating model parameters uses the method of maximum likelihood estimation. While the weighting function used is fixed bisquare kernel. Data is processed using software R packages lctools. The results were obtained if the model involved all three independent variables, the effect of the three independent variables on the number of deaths due to diphtheria was not significant. This is because there is a strong and significant relationship between independent variables, so that if the model does not involve a variable percentage of the population (population density), the percentage of vaccinated people affects the number of deaths caused by diphtheria significantly in an area. So that the provision of immunization vaccines can reduce the number of deaths caused by diphtheria
D-OPTIMAL DESIGNS FOR SPLIT-PLOT MIXTURE PROCESS VARIABLE DESIGNS OF THE STEEL SLAG EXPERIMENT Arina, Faula; Wigena, Aji Hamim; Sumertajaya, I Made; Syafitri, Utami
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 1 (2022): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (661.096 KB) | DOI: 10.30598/barekengvol16iss1pp303-312

Abstract

The nature of the steel slag concrete experiment followed a mixture process variable (MPV) design. In this study, the concrete is composed of five mixture components, cement, fine aggregate, coarse aggregate, percentage steel slag replaced the fine aggregate and water, and process variable was the size of steel slag. Due to the constraints of the components, the experimental region was not a simplex. The standard MPV of a quadratic model produces large experimental runs. In this paper, D-optimal design with split- plot MPV approach was proposed. The five mixture components were assigned as the subplot factors and the process variable was assigned as the whole plot factors. The main objective of this information is a modified point exchange algorithm was developed to generate the D-optimal design. In addition, the paper investigates related issue namely, the estimation of the covariant matrix in MPV split-plot design. The final design consisted of 18 whole plots each of size 2 and experiment design with 36 observations
OUTLIER IDENTIFICATION ON PENALIZED SPLINE REGRESSION MODELING FOR POVERTY GAP INDEX IN JAVA Fadilah, Anggita Rizky; Fitrianto, Anwar; Sumertajaya, I Made
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 4 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (437.76 KB) | DOI: 10.30598/barekengvol16iss4pp1231-1240

Abstract

Java is one of the islands in Indonesia which has good establishment acceleration. Even though economic growth was good, poverty is still a serious problem. Three of six provinces, including DI Yogyakarta, Central Java, and East Java still have poverty rates above national rates in March 2020. This problem indicates that an imbalance in poverty happens between those regions. Several regions have extreme conditions or known as outliers. Besides that, poverty gap data have a complex pattern so modeling using a non-parametric approach is suitable. This study aims to build an appropriate model to support the success of poverty alleviation in Java and the identification of outliers was carried out using an adjusted boxplot. The best-penalized regression spline model for Poverty Gap Index in Java Island was obtained by Generalized minimum Cross-Validation (GCV) using optimum smoothing parameter (λ) 0,12 and knot combination (1, 2, 4, 1, 5, 3, and 1) for seven predictor variables. The result shows that penalized spline regression model has a higher R2 than OLS regression. The R2 is obtained 69,10%, so the model is feasible to explain the variability of the poverty gap in Java. Moreover, based on the outliers’ identification shows a dependency between outlier in data and residual because some districts/cities are identified as outliers in both.
THE PROMINENCE OF VECTOR AUTOREGRESSIVE MODEL IN MULTIVARIATE TIME SERIES FORECASTING MODELS WITH STATIONARY PROBLEMS Rohaeti, Embay; Sumertajaya, I Made; Wigena, Aji Hamim; Sadik, Kusman
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 4 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (688.398 KB) | DOI: 10.30598/barekengvol16iss4pp1313-1324

Abstract

One of the problems in modelling multivariate time series is stationary. Stationary test results do not always produce all stationary variables; mixed stationary and non-stationary variables are possible. When stationary problems are found in multivariate time series modelling, it is necessary to evaluate the model's performance in various stationary conditions to obtain the best forecasting model. This study aims to get a superior multivariate time series forecasting model based on the goodness of the model in various stationary conditions. In this study, the evaluation of the model's performance through simulation data modelling is then applied to the actual data with a stationary problem, namely Bogor City inflation data. The best model in simulation modelling is based on the stability of RMSE and MAD in 100 replications. The results are that the VAR model is the best in various stationary conditions. Meanwhile, the best model on actual data modelling is based on evaluation in 4 folds for model fitting power and model forecasting power. The Bogor City inflation data modelling with the mixed stationary problem resulted in the best model, namely the VAR(1) model. This means the VAR model is good enough to be used as a forecasting model in mixed stationary conditions. Thus, in this study, based on the goodness of the model in two modelling scenarios in various stationary conditions, overall, it was found that the VAR model was superior to the VARD and VECM models.
BICLUSTERING APPLICATION IN INDONESIAN ECONOMIC AND PANDEMIC VULNERABILITY Ningsih, Wiwik Andriyani Lestari; Sumertajaya, I Made; Saefuddin, Asep
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 4 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (997.792 KB) | DOI: 10.30598/barekengvol16iss4pp1453-1464

Abstract

Biclustering is an analytical tool to group data from two dimensions simultaneously. The analysis was first introduced by Hartigan (1972) and applied by Cheng and Church (2000) to the gene expression matrix. The Cheng and Church (CC) algorithm is a popular biclustering algorithm and has been widely applied outside the field of biological data in recent years. This algorithm application in economic and Covid-19 pandemic vulnerability cases is exciting and essential to do in order to get an overview of the spatial pattern and characteristics of the bicluster of economic and COVID-19 pandemic vulnerability in Indonesia. This study uses secondary data from some ministries. Forming a bicluster using the CC algorithm requires determining the delta threshold so that several types of delta thresholds are formed to choose the best (optimum) using the evaluation of the average value of mean square residue (MSR) to volume ratios. The similarity of the optimum bi-cluster with the other is also seen based on the Liu and Wang index values. The 0.01 delta threshold is chosen as the optimum threshold because it produces the smallest average value of MSR to volume ratios (0.00032). Based on Liu and Wang Index values, the optimum threshold has a similarity level below 50% with other types of delta thresholds, so the threshold is the best unique threshold. The optimum threshold resulted in six biclusters (six spatial patterns). Most regions in Indonesia (11 provinces) tend to have low economic and COVID-19 pandemic vulnerability in the first spatial pattern characteristic variables.
FACTORS AFFECTING INDONESIAN PADDY HARVEST FAILURE: A COMPARISON OF BETA REGRESSION, QUASI-BINOMIAL REGRESSION, AND BETA MIXED MODELS Kusumaningrum, Dian; Hidayat, Agus Sofian Eka; Notodiputro, Khairil Anwar; Kurnia, Anang; Sartono, Bagus; Sumertajaya, I Made
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 4 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss4pp2611-2622

Abstract

The Paddy harvest failure rate is one of the key aspects in determining the total number of claims in a crop insurance policy. It is also an important factor indicating the fulfillment of targeted total production. Therefore, we proposed Beta Regression, Quasi Binomial Regression, and Beta Mixed Models which can be used to analyze significant variables affecting paddy harvest failure rates. Model selection and evaluations indicated that the Nested Beta Mixed Model is the best. Previous research has shown four significant fixed effect variables: drought, flood, pests, and disease risks. Pests and other types of risks also affect the variability of loss rate. All variables have positive effects, indicating higher values cause a higher possibility of a higher average harvest failure rate. High variability was shown for province, municipality, and farmers' random effects. Hence, to prevent a more significant loss rate, MoA should consider more intensive and innovative participatory activities in farmer groups to enhance good farming practices, especially for farmers who suffer from certain risks. These activities should also consider the local characteristics of each province or municipality. As for AUTP development and improvement, farmers with lower failure risks could be given a discounted premium to make it more appealing.
Biclustering-Based Analysis to Identify Fruit Production Potential in Indonesia Using Plaid Model Algorithm Alwani, Nadira Nisa; Sumertajaya, I Made; Wigena, Aji Hamim
Scientific Journal of Informatics Vol. 12 No. 3: August 2025
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v12i3.25054

Abstract

Purpose: The application of biclustering using the plaid model aims to simultaneously identify mapping or grouping patterns of provinces and fruit type in Indonesia. The performance evaluation of the plaid model algorithm is used to assess its capability to discover and generate optimal biclusters, thereby representing the relationship between regions and fruit types with similar production characteristics. Methods: The plaid model algorithm produces optimal biclusters by configuring parameter scenarios such as model selection, managing the number of layers, and determining threshold values for rows and columns. The Average Mean Square Residue (MSR) value and the number of biclusters that can provide the most relevant data are used to determine the optimal parameter selection. Result: The plaid model algorithm effectively grouped provinces and fruit varieties into multiple biclusters. The row-constant model was choosen based on the average MSR value of 2.0537, which formed five overlapping biclusters across provinces and fruit types. Several provinces, such as Central Java and West Java, demonstrated a high potential for rose apples, breadfruit, and salak. Other provinces showed comparatively moderate levels of production. Novelty: This study presents a novel way to apply the plaid model biclustering algorithm to data on fruit varieties in various Indonesian provinces. Rarely used in horticulture, this method offers an alternative perspective on structured commodity mapping, especially when identifying specific patterns between fruit varieties and geographic distribution.
Stacking Ensemble RNN-LSTM Models for Forecasting the IDR/USD Exchange Rate with Nonlinear Volatility Pratiwi, Windy Ayu; Sumertajaya , I Made; Notodiputro , Khairil Anwar
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 4 (2025): JUTIF Volume 6, Number 4, Agustus 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.4.5057

Abstract

Abstract - Predicting exchange rates with high volatility and nonlinear patterns presents a critical challenge in financial analysis. Deep learning models such as RNN and LSTM are widely used for their ability to capture temporal dependencies, yet each has limitations when applied individually. This study aims to enhance the prediction accuracy of the Indonesian Rupiah (IDR) to US Dollar (USD) exchange rate by implementing a stacking ensemble approach that combines RNN and LSTM models. The dataset consists of 522 weekly observations from January 2015 to December 2024, sourced from the official website of Bank Indonesia (bi.go.id). In the proposed framework, RNN and LSTM serve as base learners, while linear regression acts as the meta-learner. Model performance is evaluated using RMSE, MAPE, and MSE. The results indicate that the stacking ensemble consistently outperforms the individual models, achieving an RMSE of 117.91, a MAPE of 0.01, and an MSE of 13,901.67. The model effectively captures historical patterns and delivers stable and accurate predictions. In conclusion, the stacking ensemble approach developed in this study contributes to the advancement of ensemble learning techniques in computer science and offers practical value for financial decision-makers, particularly in managing complex and dynamic exchange rate scenarios.
Co-Authors A Kurnia A. A. Mattjik AA Mattjik Abd. Rasyid Syamsuri Abdu Alifah Abdul Aziz Nurussadad Ade Gusalinda Adelia Putri Pangestika Agus Mohamad Soleh Agustin Faradila Ahmad Anshori Mattjik Ahmad Ansori Matjjik Ahmad Ansori Mattjik Ahmad Ansori Mattjik Aidi, Muhammad N Aini, Febri Nur Aji Hamim Wigena Akbar Rizki Alfian Futuhul Hadi Alwani, Nadira Nisa Amanda Permata Dewi Anang Kurnia Andi Setiawan Andrew Donda Munthe Anggraini Sukmawati Anik Djuraidah Arina, Faula Aropah, Vina Da'watul Aropah, Vina Da’watul ASEP SAEFUDDIN Astari, Reka Agustia Azagi, Ilham Alifa Azis, Irfani Bagus Sartono Budi Susetyo Budi Susetyo Choirun Nisa Chrisinta, Debora Cici Suhaeni Cynthia Wulandari Dede Dirgahayu Domiri Dede Dirgahayu Domiri, Dede Dirgahayu Dian Kusumaningrum Dian Kusumaningrum Diki Akhwan Mulya Doni Suhartono Dwi Agustin Nuriani Sirodj Dwi Yulianti Embay Rohaeti Emeylia Safitri Erfiani Erfiani Erfiani Erfiani, Erfiani Erwina Erwina Evita Choiriyah Fadilah, Anggita Rizky FAHREZAL ZUBEDI Fahriya, Andina Faqih Udin dan Jono M. Munandar Meivita Amelia Farit M Afendi Farit Mochamad Afendi Fitria Hasanah Fitrianto, Anwar Gusti Tasya Meilania Halimatus Sa'diyah Hari Wijayanto Haryastuti, Rizqi Hengki Muradi Hidayat, Agus Sofian Eka Hilda Zaikarina Huda, Usep Firdaus I Gede Nyoman Mindra Jaya Ilma Nabila Ilmani, Erdanisa Aghnia Imam Adiyana Indahwati Indonesian Journal of Statistics and Its Applications IJSA Iqbal, Teuku Achmad Irfani Azis Irfani Azis Ismah, Ismah Isti Rochayati Itasia Dina Sulvianti Jamaluddin Rabbani Harahap Jasiulewicz, Anna Khairil Anwar Notodiputro Kurnia, A Kusdaniyama, Nunung Kusman Sadik Laradea Marifni Lestari P, Merryanty Linda Sakinah M. Syamsul Maarif Ma'mun Sarma Manuel Leonard Sirait Manuel Leonard Sirait Manuel Leonard Sirait Mattjik, AA Maulida, Annisaturrahmah Mega Pradita Pangestika Meilania, Gusti Tasya Merryanty Lestari P Mintarto Mundandar, Jono Muhamad Nur Aidi Muhammad Amirullah Yusuf Albasia Muhammad N Aidi Muhammad Nur Aidi Muhammad Ulinnuha Mulianto Raharjo Munanda, Jono Mintarto Muradi, Hengki Newton Newton Nina Valentika Ningsih, Wiwik Andriyani Lestari Noercahyo, Unggul Sentanu Novi Hidayat Pusponegoro Nunung Kusdaniyama Nunung Kusdaniyama Nur Hikmah Nurlia Eka Damayanti Nurus Sabani Pasaribu, Sahat M. Pepi Novianti Pika Silvianti Pratiwi, Windy Ayu Pratiwi, Windy Ayu Pudji Muljono Purwaningsih, Siti Samsiyah Puspasari, Novia Rahardiantoro, Septian Rahma Anisa Rahma Anisa Rhesa Adisty, Mohamad Risnawati, I'lmisukma Rizqi Haryastuti Sahat M. Pasaribu Sarah Fadhlia Sarma, Ma’mun Satria Yudha Herawan SATRIYAS ILYAS Setyono Setyono Setyono Sirait, Manuel Leonard Siti Samsiyah Purwaningsih Sri Surjani Tjahjawati Sunardi Sunardi Sunardi Suruddin, Adzkar Adlu Hasyr Sutomo, Valantino A Syafitri, Utami Syella Sumampouw Tsabitah, Dhiya Tsabitah, Dhiya Ulayya Ulfah Sulistyowati Utami Dyah Syafitri Valantino A Sutomo Valentika, Nina Wibowo, Dwi Yoga Ari Winda Nurpadilah Windi D.Y Putri Wiwik Andriyani Lestari Ningsih Yenni Angraini Yoga, Ibnu Abi Zulkarnain, Rizky