p-Index From 2021 - 2026
13.012
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) International Journal of Reconfigurable and Embedded Systems (IJRES) Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Lontar Komputer: Jurnal Ilmiah Teknologi Informasi Jurnal INKOM TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika JETT (Jurnal Elektro dan Telekomunikasi Terapan) JOIV : International Journal on Informatics Visualization JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) TEKTRIKA - Jurnal Penelitian dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, dan Elektronika Building of Informatics, Technology and Science Journal of Electronics, Electromedical Engineering, and Medical Informatics IJAIT (International Journal of Applied Information Technology) Journal of Applied Engineering and Technological Science (JAETS) Jurnal Abdi Insani Madani : Indonesian Journal of Civil Society JURPIKAT (Jurnal Pengabdian Kepada Masyarakat) JURNAL ILMIAH GLOBAL EDUCATION Prosiding Konferensi Nasional PKM-CSR Jurnal Nasional Teknik Elektro dan Teknologi Informasi eProceedings of Applied Science eProceedings of Engineering Community Service Seminar and Community Engagement (COSECANT) Abdibaraya: Jurnal Pengabdian Masyarakat Jurnal Rekayasa elektrika Jurnal INFOTEL Journal of Applied Engineering and Social Science
Claim Missing Document
Check
Articles

DETEKSI PENYAKIT COVID-19 BERDASARKAN CITRA X-RAY MENGGUNAKAN DEEP RESIDUAL NETWORK HARIYANI, YULI SUN; HADIYOSO, SUGONDO; SIADARI, THOMHERT SUPRAPTO
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 8, No 2 (2020): ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektro
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v8i2.443

Abstract

ABSTRAKPenyakit Coronavirus-2019 atau Covid-19 telah menjadi pandemi global dan menjadi masalah utama yang harus segera dikendalikan. Salah satu cara yang dapat dilakukan adalah memutus rantai penyebaran virus tersebut dengan melakukan deteksi dan melalukan karantina. Pencitraan X-Ray dapat dijadikan alternatif dalam mempelajari Covid-19. X-Ray dianggap mampu menggambarkan kondisi paru-paru pada pasien Covid-19 dan dapat menjadi alat bantu diagnosa klinis. Pada penelitian ini, kami mengusulkan pendekatan deep learning berbasis residual deep network untuk deteksi Covid-19 melalui citra chest X-Ray. Evaluasi yang dilakukan untuk mengetahui performa metode yang diusulkan berupa precision, recall, F1, dan accuracy. Hasil eksperimen menunjukkan bahwa usulan metode ini memberikan precision, recall, F1 dan accuracy masing-masing 0,98, 0,95, 0,97 dan 99%. Pada masa mendatang, studi ini diharapkan dapat divalidasi dan kemudian digunakan untuk melengkapi diagnosa klinis oleh dokter.Kata kunci: Coronavirus-2019, Covid-19, chest X-Ray, deep learning, residual network ABSTRACTCoronavirus-2019 or Covid-19 disease has become a global pandemic and is a major problem that must be stopped immediately. One of the ways that can be done to stop its spreading is to break the spreading chain of the virus by detecting and doing quarantine. X-Ray imaging can be used as an alternative in detecting Covid-19. X-Ray is considered able to describe the condition of the lungs for Covid-19 suspected patients and can be a supporting tool for clinical diagnosis. In this study, we propose a residual based deep learning approach for Covid-19 detection using chest X-Ray images. Evaluation is carried out to determine the performance of the proposed method in the form of precision, recall, F1 and accuracy. Experiments results show that our proposed method provides precision, recall, F1 and accuracy respectively 0.98, 0.95, 0.97 and 99%. In the future, this study is expected to be validated and then used to support clinical diagnoses by doctors.Keywords: Coronavirus-2019, Covid-19, chest X-Ray, deep learning, residual network
Comparison of resting electroencephalogram coherence in patients with mild cognitive impairment and normal elderly subjects Sugondo Hadiyoso; Inung Wijayanto; Suci Aulia
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1558-1564

Abstract

Mild cognitive impairment (MCI) was a condition beginning before more serious deterioration, leading to Alzheimer’s dementia (AD). MCI detection was needed to determine the patient's therapeutic management. Analysis of electroencephalogram (EEG) coherence is one of the modalities for MCI detection. Therefore, this study investigated the inter and intra-hemispheric coherence over 16 EEG channels in the frequency range of 1-30 Hz. The simulation results showed that most of the electrode pair coherence in MCI patients have decreased compared to normal elderly subjects. In inter hemisphere coherence, significant differences (p<0.05) were found in the FP1-FP2 electrode pairs. Meanwhile, significant differences (p<0.05) were found in almost all pre-frontal area connectivity of the intra-hemisphere coherence pairs. The electrode pairs were FP2-F4, FP2-T4, FP1-F3, FP1-F7, FP1-C3, FP1-T3, FP1-P3, FP1-T5, FP1-O1, F3-O1, and T3-T5. The decreased coherence in MCI patients showed the disconnection of cortical connections as a result of the death of the neurons. Furthermore, the coherence value can be used as a multimodal feature in normal elderly subjects and MCI. It is hoped that current studies may be considered for early detection of Alzheimer’s in a larger population.
Development of Wireless Patient’s Vital Sign Monitor Using Wireless LAN (IEEE.802.11.b/g) Protocol Achmad Rizal; Vera Suryani; Jondri Jondri; Sugondo Hadiyoso
International Journal of Electrical and Computer Engineering (IJECE) Vol 4, No 6: December 2014
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (563.464 KB)

Abstract

Vital sign monitor is typical medical instrument for basic physiological measurement. Medical practitioner assesses a patient’s health condition by observing measurement results shown in display. In this research, we designed low cost, wireless, PC-based vital sign monitor. Signals captured in designed vital sign monitor are electrocardiogram (ECG), photoplethysmogram (PPG), and body temperature. Captured data are transmitted via wireless LAN module so that medical practitioner is able to monitor patient’s condition remotely from another room or place. The system worked well for maximum transmission distance about 45 meters for LOS condition and 20 meter for NLOS condition.DOI:http://dx.doi.org/10.11591/ijece.v4i6.6429
Data prediction for cases of incorrect data in multi-node electrocardiogram monitoring Sugondo Hadiyoso; Heru Nugroho; Tati Latifah Erawati Rajab; Kridanto Surendro
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 2: April 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i2.pp1540-1547

Abstract

The development of a mesh topology in multi-node electrocardiogram (ECG) monitoring based on the ZigBee protocol still has limitations. When more than one active ECG node sends a data stream, there will be incorrect data or damage due to a failure of synchronization. The incorrect data will affect signal interpretation. Therefore, a mechanism is needed to correct or predict the damaged data. In this study, the method of expectation-maximization (EM) and regression imputation (RI) was proposed to overcome these problems. Real data from previous studies are the main modalities used in this study. The ECG signal data that has been predicted is then compared with the actual ECG data stored in the main controller memory. Root mean square error (RMSE) is calculated to measure system performance. The simulation was performed on 13 ECG waves, each of them has 1000 samples. The simulation results show that the EM method has a lower predictive error value than the RI method. The average RMSE for the EM and RI methods is 4.77 and 6.63, respectively. The proposed method is expected to be used in the case of multi-node ECG monitoring, especially in the ZigBee application to minimize errors.
FPGA-based implementation of speech recognition for robocar control using MFCC Bayuaji Kurniadhani; Sugondo Hadiyoso; Suci Aulia; Rita Magdalena
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.12615

Abstract

This research proposes a simulation of the logic series of speech recognition on the MFCC (Mel Frequency Spread Spectrum) based FPGA and Euclidean Distance to control the robotic car motion. The speech known would be used as a command to operate the robotic car. MFCC in this study was used in the feature extraction process, while Euclidean distance was applied in the feature classification process of each speech that later would be forwarded to the part of decision to give the control logic in robotic motor. The test that has been conducted showed that the logic series designed was precise here by measuring the Mel Frequency Warping and Power Cepstrum. With the achievement of logic design in this research proven with a comparison between the Matlab computation and Xilinx simulation, it enables to facilitate the researchers to continue its implementation to FPGA hardware.
Automatic face and VLP’s recognition for smart parking system Reivind P. Persada; Suci Aulia; Burhanuddin D.; Sugondo H.
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i4.11746

Abstract

One of the concerning issues regarding smart city is Smart Parking. In Smart Parking, some researchers try to provide solutions and breakthroughs on several research topics among security systems, the availability of single space, an IoT framework, etc. In this study, we proposed a security system on Smart Parking based on face recognition and VLP’s (Vehicle License Plates) identification. In this research, SSIM (Structural Similarity) method as part of IQA has been applied due to its reliability and simple computation for face detection and recognition process. From the test results of 30 data, obtained the highest SSIM value 0.83 with the highest accuracy rate of 76.67%. That level of accuracy still has not reached the implementation standard of 99.9%. So that it still needs to be improved in the future studies, especially in the filtering noise section.
Implementation of electronic stethoscope for online remote monitoring with mobile application Sugondo Hadiyoso; Dieny Rofiatul Mardiyah; Dadan Nur Ramadan; Asril Ibrahim
Bulletin of Electrical Engineering and Informatics Vol 9, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (599.194 KB) | DOI: 10.11591/eei.v9i4.2231

Abstract

The stethoscope is a piece of medical standard equipment that isused by a physician for an initial examination of the patient. Generally, the stethoscopeis used for auscultating sounds which are generated by the workings of organ systems such as cardiac, lung or digestive. In the present condition with the growing number of the patient population, it has an impact on the burden of hospitals and medical practitioners. So that treatment is not optimal, especially patients who need continuous monitoring. Thus it needs a system that can work dynamically, flexibly and remotely based. This paper focuses on the implementation of the electronic stethoscope which is integrated with a mobile phone as the modality of online data transmission through the internet network. The prototype of an electronic stethoscope uses condenser mic, pre-amplifier, wide bandpass filter (20 Hz-1 KHz) and audio amplifier. The maximum gain is 28.63 dB in the 20 Hz-690 Hz frequency range. The signal output can be connected to the android mobile through the jacked phone to be stored in MP3 format and then sent to the cloud server for further monitoring and analysis. The application called “Steder” supports realtime communication between patient and physician for medical check-up, consultation, and discussion activities.
Multi-wavelet level comparison on compressive sensing for MRI image reconstruction Indrarini Dyah Irawati; Sugondo Hadiyoso; Yuli Sun Hariyani
Bulletin of Electrical Engineering and Informatics Vol 9, No 4: August 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (771.477 KB) | DOI: 10.11591/eei.v9i4.2347

Abstract

In this study, weproposed compressive sampling for MRI reconstruction based on sparse representation using multi-wavelet transformation. Comparing the performance of wavelet decomposition level, which are level 1, level 2, level 3, and level 4. We used gaussian random process to generate measurement matrix. The algorithm used to reconstruct the image is l_1 norm. The experimental results showed that the use of wavelet multi-level can generate higher compression ratio but requires a longer processing time. MRI reconstruction results based on the parameters of the peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) show that the higher the level of decomposition in wavelets, the value of both decreases.
SISTEM MULTIPLEXING PADA PENGIRIMAN DATA MONITORING ECG, PPG, DAN SUHU TUBUH BERBASIS MIKROKONTROLER Sugondo Hadiyoso; Akhmad Alfaruq; Achmad Rizal
Seminar Nasional Aplikasi Teknologi Informasi (SNATI) 2011
Publisher : Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Perangkat sistem monitoring elektrokardiograf (ECG), potoplethysmograf (PPG), dan suhu tubuh telah banyakdikembangkan akan tetapi sistemnya masih terpisah sehingga tidak hanya satu perangkat yang dibutuhkanuntuk melakukan monitoring. Hal ini menimbulkan ketidakefisienan dalam penggunaan perangkat karena adalebih dari satu perangkat untuk melakukan fungsi monitoring tersebut. Untuk itu diperlukan suatu teknikmultiplexing atau penggabungan dari beberapa sinyal data baik elektrokardiograf, potoplethysmograf, dan suhutubuh sehingga data dapat dikirim secara bersamaan tanpa saling mempengaruhi satu sama lain. Teknikmultiplexing ini dilakukan meggunakan mikrokontroler AVR ATMEGA 16 karena pada mikrokontroler jenis inimemiliki ADC internal sebanyak delapan buah sehingga dapat digunakan untuk pembacaan beberapa data hasilakuisisi sensor. Setelah dilakukan pembacaan oleh ADC pada hasil akuisi ECG, PPG, dan suhu tubuh, datahasil konversi tersebut dikirim secara serial dengan format yang telah ditentukan sehingga ketiga data tersebutjika dikirim akan berurutan yang bertujuan agar proses demultiplexing di sisi penerima menjadi lebih mudah.Data dikirim ke personal komputer atau laptop menggunakan perangkat serial to USB. Pengujian dilakukandengan bantuan software hyper terminal yang sudah tersedia pada sistem operasi windows. Dari hasilpengujian didapatkan hasil yang sesuai dengan perancangan, pada hyper terminal data hasil akuisisi disajikandalam 3 kolom, kolom pertama dan kedua berupa nilai amplituda sinyal ECG dan PPG kemudian kolom ketigaberupa data suhu tubuh. Untuk penelian berikutnya dapat dilakukan prose demultiplexing menggunakansoftware aplikasi sehingga data dapat ditampilkan dalam grafik.
Multipoint to Point EKG Monitoring Berbasis ZigBee Sugondo Hadiyoso; Suci Aulia
Seminar Nasional Aplikasi Teknologi Informasi (SNATI) 2014
Publisher : Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pada penelitian sebelumnya, telahdirealisasikan perangkat monitoring EKG berbasis Wifidan ZigBee namun masih bersifat point to point sehinggatidak dapat digunakan untuk memonitor banyak pasiendalam satu perangkat display. Sistem point to pointmenjadi tidak efisien ketika digunakan pada beberapapasien yang memerlukan pemantauan secara bersamaan.Oleh karena itu diperlukan konfigurasi multipoint to pointuntuk mengatasi permasalahan tersebut. Pada penelitianini telah direalisasikan suatu sistem monitoring EKG yangmengaplikasikan konfigurasi jaringan multipoint to pointmenggunakan perangkat ZigBee sebagai modultransceiver. Sebagai penelitian awal, direalisasikan sistemmonitoring untuk tiga (3) perangkat EKG pada sisi pasiendan satu perangkat penerima sebagai penampil data sinyalEKG. Sistem ini kita sebut 3 to 1 EKG monitoring system.Perangkat EKG pada proyek ini menggunakan tekniksadapan bipolar lead berbasis segitga Einthoven dengansadapan lead II sebagai standar monitoring EKG.
Co-Authors A. V. Senthil Kumar A.A. Ketut Agung Cahyawan W Aaron Abel Abi Hakim Amanullah Achmad Rizal Achmad Rizal ADIANGGIALI, ANYELIA Adisaputra, Rangga Adiwijaya, Agustinus Aldian Adjie Gery Ramadhan Adnan Azhary Afandi, Mas Aly Agung Muliawan Ahmad Hilmi Ahmad Muammar Agusti Akhmad Alfaruq Akhmad Alfaruq Alfaruq, Akhmad Alfaruq, Akhmad Aliffansyah, Lingga Alvinas Deva Sih Illahi Ana Durrotul Isma Anatasya Bella Andhita Nurul Khasanah Andri Juli Setiawan Andro Harjanto Anggit Syorgaffi Anggun Fitrian Isnawati ANGGUNMEKA LUHUR PRASASTI Arfianto Fahmi Arif Indra Irawan ARIS HARTAMAN Ashshiddiqqi, Muhammad Arhizal Asril Ibrahim Astri Wulandari Ayu Chellsya, Ananda Azahra, Yasmin Azriel Gilbert Samuel Rogito Azzahra, Salwa Bagus Tri Astadi Balova , Fathrurrizqa Bambang Hidayat Bandiyah Sri Aprillia Barus, Exal Deo Jayata Bayu Erviga Yulanda Setiawan Bayuaji Kurniadhani Bimo Rian Tri Nugroho Budhi Irawan Budi Prasetya Budiyawan Naztin Burhanuddin D. Burhanuddin Dirgantoro Cucu Fitri Dadan Nur Ramadan Dadan Nur Ramadhan Dadan Nur Ramadhan Denny Darlis Dewi Rahmaniar, Thalita Dharu Arseno Didin Bramastya Dieny Rofiatul Mardiyah Diliana, Faizza Haya Efri Suhartono Ema ERVIN MASITA DEWI Exal Deo Jayata Barus Ezi Rohmat Fadiaga Omar Michlas Fairuz Azmi FAJRI, SETIO EKA FARDAN FARDAN Farrel Fahrozi Fathrurrizqa Balova FATURRAHMAN, RAIHAN Fauzia Anis Sekar Ningrum Fony Ferliana Widianingrum Gadama, Melsan Gelar Budiman Ghilman Hafizhan Gifari, Rizqi Al Habib, Arrijal Hadjwan, Razel Hannissa Sanggarini Hariyani , Yuli Sun Hasanah Putri Hengky Yudha Bintara Heru Nugroho Hilman Fauzi, Hilman HUMAIRANI, ANNISA Hurianti Vidyaningtyas HW, EVA AISAH Ilham Edwian Berliandhy Ilmi, M. Bahrul Indrarini Dyah Irawati Inung Wijayanto Irsyad Abdul Basit Istikmal Ivany Sesa Rehadi Ivosierra Andrea Larasaty Jannah, Firna Noor Jannah, Sabila Hayyinun Jasmine, Diva Dhila Jauhari, Muhammad I Javani Sekar Larasati Jehan Pratama Herdaning Jondri Jondri Koredianto Usman Kridanto Surendro Kris Sujatmoko Kurnia Ismanto, Rima Ananda Larasaty, Ivosierra Andrea Lata Tripathi, Suman LATIP, ROHAYA Ledya Novamizanti Lurina, Manda Luthfi Muhammad Pahlevi Lutvi Murdiansyah Murdiansyah M. Nur Imam DJ Mahmud Dwi Sulistiyo Manda Lurina Meidatomo , Muhammad Haykal Milan Adila Amalia Mohamad Ramdhani Muh. Kurniawan, A. Muhamad Roihan Muhammad Adnan Muhammad Afif Ridwansyah Muhammad Iqbal Muhammad Iqbal MUHAMMAD JULIAN, MUHAMMAD Nadya Silva Arline Nasution, Muhammad Ilham Kurniawan Nasution, Seri Wahyuni Naufal Juhaidi Jafal Naufal Rizky Pratama Nur Arviah Sofyan Nur Pratama, Yohanes Juan Nur Ramadhani Nursanto Nursanto NURSANTO NURSANTO, NURSANTO Nurwan Reza Fachrurrozi Okki Rahmalisty, Fiona Pahira, Ela Diranda Permana, Andri Satia Prahara, Dzakwan Bahar Prajna Deshanta Ibnugraha Putra, I Gusti Ngurah R. A. Putri Fatoni, Salwa Berliana Putri, Athaliqa Ananda Putri, Silvi Dahlia R. Dhenake Aghni Bunga R. Yunendah Nur Fu’adah Radial Anwar, Radial Radian Sigit Raditiana Patmasari Rahmaniar, Thalita Dewi Rahmat Widadi Ramdani, Ahmad Zaky Ratna Mayasari Reivind P. Persada RENALDI, LUKY RENALDI, LUKY RENDIKA, ANANDA Rendy Munadi Reni Dyah Wahyuningrum Reny Yuliani Arnis Rina Pudji Astuti Riska Aprilina Rita Magdalena Rita Purnamasari Rizal Fachrudin Maulana Rizky Aulia Rahman Robinzon Pakpahan Rogito, Azriel Gilbert Samuel ROHMAT TULLOH Rosmiati, Mia Ruli Pandapotan, Bagas Ryan Bagus Wicaksono Safitri, Ayu Sekar Said, Ziani Sania Marcellina Bryan Sasmi Hidayatul Yulianing Tyas Sa’idah, Sofia Sekar Safitri, Ayu Septiansyah, Rizky SETIAWAN, AWAN WAHYU Sianturi, Kristian Fery Sidqi, Anka Sigit, Radian Siti Sarah Maidin Siti Zahrotul Fajriyah Sofia Naning Hertiana Suci Aulia Sugeng Santoso Sulistyo, Tobias Mikha Surya Putra Agung Saragih Suyatno Suyatno Syifa Nurgaida Yutia Tasya Chairunnisa Tati Latifah Erawati Rajab Teguh Musaharpa Gunawan Thomhert Suprapto Siadari Tita Haryanti Tobing, Goldfried Manuel Lbn Tri Nopiani Damayanti Triadi Triadi Unang Sunarya Untari Novia Wisesty Utami, Ayu Tuty Vany Octaviany Vera Suryani Wahyu Hauzan Rafi Wibowo, Raiyan Adi Wirakusuma, Muhammad P. Yasmin Azahra Yoza Radyaputra Yudha Purwanto Yudiansyah Yudiansyah YULI SUN HARIYANI YUYUN SITI ROHMAH Zahrah, Nasywa Nur Zhillan Al Rashif, Mohammad Zulfikar F.M. Ramli