p-Index From 2021 - 2026
9.304
P-Index
This Author published in this journals
All Journal Jurnal Buana Informatika JSI: Jurnal Sistem Informasi (E-Journal) Jurnal Edukasi dan Penelitian Informatika (JEPIN) Annual Research Seminar CESS (Journal of Computer Engineering, System and Science) Jurnal Ilmiah KOMPUTASI Sistemasi: Jurnal Sistem Informasi Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) JTT (Jurnal Teknologi Terpadu) Jurnal Manajemen STIE Muhammadiyah Palopo MBR (Management and Business Review) JOURNAL OF APPLIED INFORMATICS AND COMPUTING Digital Zone: Jurnal Teknologi Informasi dan Komunikasi The IJICS (International Journal of Informatics and Computer Science) JURIKOM (Jurnal Riset Komputer) JURTEKSI JOISIE (Journal Of Information Systems And Informatics Engineering) INFOMATEK: Jurnal Informatika, Manajemen dan Teknologi Building of Informatics, Technology and Science Zonasi: Jurnal Sistem Informasi JATI (Jurnal Mahasiswa Teknik Informatika) JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Jurnal Darma Agung Jurnal Bisnis, Manajemen, dan Ekonomi Jurnal Generic Jurnal Pendidikan dan Teknologi Indonesia Jurnal Algoritma Jurnal Teknologi dan Manajemen Industri Terapan Jurnal Indonesia Sosial Teknologi IIJSE The Indonesian Journal of Computer Science Management Analysis Journal Scientific Journal of Informatics Journal of Mathematics, Computation and Statistics (JMATHCOS) Buffer Informatika Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics JuTISI (Jurnal Teknik Informatika dan Sistem Informasi)
Claim Missing Document
Check
Articles

PREDIKSI SENTIMEN PENGGUNA SPOTIFY MENGGUNAKAN METODE NAÏVE BAYES STUDI KASUS ULASAN PENGGUNA DI PLAY STORE Fatihaturrahmah, Aisyah; Amanda Ardhani, Dhita; Putri Casanova, Musdalifa; Cahya Aulia, Syifa; Najwa Widasari, Yesya; Ditha Tania, Ken; Kurnia Sari, Winda
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 4 (2025): JATI Vol. 9 No. 4
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i4.14112

Abstract

Spotify merupakan salah satu platform layanan streaming music digital yang banyak digunakan, tetapi ulasan pengguna menunjukkan variasi tingkat kepuasan terhadap layanan yang tersedia. Penelitian ini berfokus pada analisis dan prediksi sentimen pengguna Spotify berdasarkan ulasan yang diperoleh dari Google Play Store dengan menggunakan metode Naïve Bayes. Penelitian ini mencakup beberapa proses, yaitu pengumpulan data, pra-pemrosesan teks (tokenisasi, normalisasi, penghapusan kata tidak bermakna, dan stemming) serta ekstraksi fitur menggunakan Term Frequency-Inverse Document Frequency (TF-IDF). Sentimen pengguna diklasifikasikan ke dalam dua kategori, yaitu positif dan negative. Evaluasi model dilakukan dengan menggunakan metrik akurasi, presisi recall dan F1-score. Hasil penelitian menunjukkan bahwa algoritma Naïve Bayes mampu mengklasifikasikan sentimen pengguna Spotify dengan akurasi sebesar 88,42%, precision 0,89, recall 0,74, dan F1-Score 0,79 (macro average). Selain itu, nilai Area Under Curve (AUC) sebesar 0,94 yang mengindikasikan bahwa model memiliki kemampuan klasifikasi yang sangat baik. Sehingga hasil ini menunjukkan bahwa pendekatan yang digunakan sudah sangat efektif dalam menganalisis sentimen pengguna dan dapat menjadi acuan bagi pengembang untuk meningkatkan kualitas terhadap layanan streaming music Spotify.
ANALISIS RISIKO AKADEMIK SISWA DENGAN METODE K-MEANS: STUDI KASUS SMPN 10 PALEMBANG Nabilatulrahmah, Raihana; Triana, Ayu; Ispahan, Tarisha; Adeliani, Adeliani; Fitriani, Suci; Amelia, Amelia; Ditha Tania, Ken; Rifai, Ahmad
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 4 (2025): JATI Vol. 9 No. 4
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i4.14181

Abstract

Pendidikan memainkan peranan penting dalam meningkatkan kualitas sumber daya manusia, terutama di kalangan siswa Sekolah Menengah Pertama (SMP). Namun, tingkat pemahaman dan capaian akademik setiap siswa berbeda, yang dipengaruhi oleh beberapa faktor seperti kehadiran, partisipasi kelas, dan keterlibatan dalam tugas. Salah satu tantangan utama dalam dunia pendidikan adalah mengidentifikasi siswa yang berisiko mengalami kesulitan akademik agar dapat diberikan intervensi yang tepat. Penelitian ini dilakukan di SMPN 10 Palembang yang belum memiliki sistem berbasis data mining untuk mengelompokkan siswa berdasarkan tingkat risiko akademik. Penelitian ini bertujuan menganalisis faktor-faktor yang memengaruhi risiko akademik siswa kelas VII menggunakan metode K-Means Clustering. Hasil penelitian menunjukkan kelompok siswa yang terbagi ke dalam 3 cluster: tidak berisiko, berisiko sedang, dan berisiko tinggi, berdasarkan data tingkat kehadiran, nilai akademik, dan partisipasi ekstrakurikuler. Temuan ini dapat menjadi dasar bagi sekolah untuk merancang intervensi yang lebih efektif guna meningkatkan performa akademik dan keterlibatan siswa di sekolah.
Ekstraksi Pengetahuan dari Ulasan Aplikasi CapCut Menggunakan Metode Aspect-Based Sentiment Analysis dan Klasifikasi Ariyani, Ishlah Putri; Tania, Ken Ditha; Wedhasmara, Ari; Meiriza, Allsela
Jurnal Buana Informatika Vol. 16 No. 01 (2025): Jurnal Buana Informatika, Volume 16, Nomor 01, April 2025
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indonesia is experiencing rapid technological development, especially in the use of the internet and editing platforms like CapCut. These platforms enable video editing on various devices; however, user satisfaction is not always guaranteed due to individual differences in experience. This research aims to identify user sentiment towards the CapCut application based on aspects, using an Aspect-Based Sentiment Analysis (ABSA) approach supported by Machine Learning algorithms for the aspect-based sentiment classification task. The algorithm used in the classification process is Support Vector Machine. The data used are reviews of the CapCut application from the Google Play Store, with a total of 22,668 data points. The results show that the Support Vector Machine (SVM) algorithm performs well in each aspect, with accuracy values of 0.88 for the feature aspect and 0.87 for the user experience aspect. The results of knowledge extraction are obtained in the form of XML, which contains user sentiment information on two main aspects: features and user experience.
PERBANDINGAN METODE NAÏVE BAYES, DECISION TREE, DAN KNN DALAM ANALISIS SENTIMEN APLIKASI GOJEK DI PLAYSTORE Maretta, Aulia Pinkan; Anadia, Qothrunnada Wafi; Sasmita, Ruth Mei; Epriyanti, Nadia; Rizkyllah, Anabel Fiorenza; Mariska, Inneke Via; Tania, Ken Ditha; Meiriza, Allsela
ZONAsi: Jurnal Sistem Informasi Vol. 7 No. 2 (2025): Publikasi artikel ZONAsi: Jurnal Sistem Informasi Periode Mei 2025
Publisher : Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/zjf8x279

Abstract

Sentiment analysis on user evaluation of Gojek application services on Play Store is important to understand user opinions on the services provided. This study compares three machine learning methods, namely Naïve Bayes, Decision Tree, and K-Nearest Neighbors (KNN) when categorizing user sentiment on Google Play Store as positive, negative, or neutral. The data processed comes from the Gojek user review dataset obtained from Kaggle. The analysis process involves data preprocessing (cleaning, stopword removal, tokenization, and split data), data transformation, and implementation of classification algorithms. The evaluation was carried out using accuracy, precision, recall, and F1-score metrics. The results of the study prove that Naïve Bayes has the best performance with an accuracy of 89%, followed by KNN (86%) and Decision Tree (84%). This study provides good insight for application developers in choosing the best method to understand user opinions and improve service quality.
Ekstraksi Pengetahuan dari Ulasan Aplikasi CapCut Menggunakan Metode Aspect-Based Sentiment Analysis dan Klasifikasi Ariyani, Ishlah Putri; Tania, Ken Ditha; Wedhasmara, Ari; Meiriza, Allsela
Jurnal Buana Informatika Vol. 16 No. 01 (2025): Jurnal Buana Informatika, Volume 16, Nomor 01, April 2025
Publisher : Universitas Atma Jaya Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Indonesia mengalami perkembangan teknologi yang pesat, khususnya dalam penggunaan internet dan platform editing seperti CapCut. Platform ini memungkinkan pengeditan video di berbagai perangkat, namun kepuasan pengguna tidak selalu terjamin karena perbedaan pengalaman individu. Penelitian ini bertujuan untuk mengidentifikasi sentimen pengguna terhadap aplikasi CapCut berdasarkan aspek.Dengan menggunakan pendekatan Aspect-Based Sentiment Analysis (ABSA) yang didukung oleh algoritma Machine Learning untuk tugas klasifikasi sentimen berdasarkan aspek. Algoritma yang digunakan dalam proses klasifikasi adalah Support Vector Machine. Data yang digunakan adalah ulasan aplikasi CapCut dari Google Play Store sebanyak 22.668 data. Hasil penelitian menunjukkan bahwa algoritma Support Vector Machine (SVM) memiliki performa yang baik untuk masing-masing aspek dengan nilai akurasi untuk aspek fitur 0,88 dan aspek user experience 0,87. Hasil ekstraksi pengetahuan yang diperoleh berupa XML yang memuat informasi sentimen pengguna terhadap dua aspek utama, yaitu fitur dan user experience. 
Analisis Sentimen Pengguna X Terhadap Coretax Menggunakan Naïve Bayes Dan Logistic Regression Siregar, Richi Nauli Juniarto; Riansyah, Muhammad Bintang Naufal; Hendrawan, Deni Agus; Baidhawi, Alif; Nugraha, Allan; Tania, Ken Ditha; Rifai, Ahmad
Jurnal Ilmiah Komputasi Vol. 24 No. 3 (2025): Jurnal Ilmiah Komputasi : Vol. 24 No 3, September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32409/jikstik.24.3.3814

Abstract

Studi ini bertujuan menganalisis sentimen publik terhadap Core Tax Administration System (CTAS), layanan pajak digital baru Direktorat Jenderal Pajak (DJP) di Indonesia. Sebanyak 2.530 tweet berbahasa Indonesia di platform X dikumpulkan melalui web scraping antara 1 Januari dan 8 Februari 2025. Setiap tweet dipra-proses: pembersihan, case folding, tokenisasi, normalisasi, stemming, penyaringan, dan pelabelan sentimen dengan leksikon InSet. Term Frequency Inverse Document Frequency (TF-IDF) digunakan untuk ekstraksi fitur, lalu dua algoritma klasifikasi Naive Bayes dan Logistic Regression diuji dengan rasio 80:20. Logistic Regression unggul dengan akurasi 80,83%, presisi 80,4%, recall 80,8%, dan skor F1 78,6%, sedangkan Naive Bayes mencapai akurasi 52,96%. Analisis word cloud mengidentifikasi kata atau frasa yang paling sering muncul. Temuan ini menegaskan keunggulan Logistic Regression dalam klasifikasi sentimen dan memberikan rekomendasi bagi pembuat kebijakan serta pengembang sistem untuk meningkatkan kegunaan CTAS dan memperkuat kepercayaan publik
Segmentasi Spasial Tingkat Kemiskinan Provinsi Sumatera Selatan Menggunakan Pendekatan Klasterisasi K-Means Jonathan Pakpahan; Septhia Charenda Putri; Ananda Khoirunnisa; Rafika Octaria Ningsih; Putri Mutiara Arinie; Arvhi Randita Setia; Ken Ditha Tania; Allsela Meiriza
Jurnal Ilmiah Komputasi Vol. 24 No. 3 (2025): Jurnal Ilmiah Komputasi : Vol. 24 No 3, September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32409/jikstik.24.3.3820

Abstract

Kemiskinan adalah tantangan utama dalam pembangunan ekonomi yang membutuhkan analisis berbasis data. Kajian ini menerapkan metode klasterisasi K-Means untuk segmentasi spasial tingkat kemiskinan berdasarkan indikator sosial-ekonomi, seperti persentase penduduk miskin, rata-rata lama sekolah, pengeluaran per kapita, serta indeks kedalaman dan keparahan kemiskinan. Data dari BPS tahun 2024 diolah menggunakan pendekatan Knowledge Discovery in Database (KDD) melalui tahapan seleksi data, prapemrosesan, transformasi, penambangan data, dan evaluasi menggunakan RapidMiner. Hasil klasterisasi membentuk empat kelompok dengan disparitas kesejahteraan antarwilayah, di mana beberapa daerah menunjukkan tingkat kemiskinan yang lebih tinggi. Melalui pemetaan berbasis data ini, penelitian diharapkan menjadi dasar bagi pengambil kebijakan dalam merancang strategi penanggulangan kemiskinan yang efektif dan tepat sasaran guna mengurangi ketimpangan sosial serta meningkatkan kesejahteraan masyarakat di Provinsi Sumatera Selatan. Kata kunci: Kemiskinan, K-Means, Klasterisasi, Data Mining, Sumatera Selatan.
Knowledge Discovery Through Sentiment Analysis and Topic Modeling of BCA Mobile and MyBCA Putri, Salsa Anindya; Tania, Ken Ditha; Naretha Kawadha Pasemah Gumay
Journal of Mathematics, Computations and Statistics Vol. 8 No. 2 (2025): Volume 08 Nomor 02 (Oktober 2025)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35580/jmathcos.v8i2.9782

Abstract

The swift adoption of mobile banking in Indonesia highlights the growing demand for secure and innovative digital financial services. PT Bank Central Asia Tbk (BCA) offers two primary applications, BCA Mobile and myBCA, catering to millions of users. Gaining insight into user perceptions is crucial for enhancing service quality and building trust. This research uses sentiment analysis and topic modeling on Google Play Store reviews for both applications to facilitate knowledge discovery. Reviews were labeled using IndoBERT, and seven classification models were assessed, including five machine learning methods and two deep learning techniques. The Gated Recurrent Unit (GRU) model demonstrated the highest performance, achieving an accuracy of 89.70%. In the realm of topic modeling, a comparison between Latent Dirichlet Allocation (LDA) and BERTopic revealed that BERTopic delivered the highest coherence score of 0.6244, identifying eight significant negative topics. The findings indicate that BCA Mobile users frequently reported issues such as login failures, unexplained balance deductions, and missing features, while myBCA users encountered problems like post-update errors, login difficulties, and challenges with face verification. This research aligns with Sustainable Development Goal (SDG) 9 by showing how knowledge discovery from user reviews can promote innovation and enhance resilient, user-centered digital banking infrastructures.
COMPARATIVE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR COSMETIC SALES PREDICTION ON TOKOPEDIA Sahira, Mutia; Tania, Ken Ditha; Afrina, Mira
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 11 No. 4 (2025): September 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v11i4.4187

Abstract

Abstract: The rapid growth of the cosmetics industry on e-commerce platforms has intensified competition, creating a critical need for effective, data-driven marketing strategies. This study aims to conduct a comparative analysis of machine learning algorithms to predict the sales categories (High, Medium, Low) of cosmetic products on the Tokopedia marketplace. Four classification models; Random Forest, XGBoost, Logistic Regression, and Naive Bayes were trained and evaluated on data collected via web scraping. The methodology incorporates the Synthetic Minority Over-sampling Technique (SMOTE) to address significant class imbalance and GridSearchCV for hyperparameter optimization to ensure a fair and robust comparison. The experimental results conclusively show that the Random Forest model achieved the best performance, yielding the highest F1-Score Macro Average of 0.75 and an accuracy of 85.3%. The superior model was subsequently implemented in a simple recommendation system to simulate optimal discount strategies, demonstrating its practical utility in providing actionable insights for business decisions. Keywords: classification; comparative analysis; machine learning; sales prediction; SMOTE Abstrak: Pertumbuhan pesat industri kosmetik pada platform e-commerce telah membuat persaingan ketat, sehingga menciptakan kebutuhan krusial akan strategi pemasaran yang efektif dan berbasis data. Penelitian ini bertujuan untuk melakukan analisis komparatif terhadap algoritma machine learning untuk memprediksi kategori penjualan (Tinggi, Sedang, Rendah) produk kosmetik di marketplace Tokopedia. Empat model klasifikasi, yaitu Random Forest, XGBoost, Regresi Logistik, dan Naive Bayes, dilatih dan dievaluasi menggunakan data yang dikumpulkan melalui web scraping. Metodologi penelitian ini menerapkan Synthetic Minority Over-sampling Technique (SMOTE) untuk mengatasi ketidakseimbangan kelas yang signifikan dan GridSearchCV untuk optimisasi hyperparameter guna memastikan perbandingan yang adil. Hasil eksperimen menunjukkan bahwa model Random Forest mencapai performa terbaik, dengan menghasilkan F1-Score Macro Average tertinggi sebesar 0,75 dan akurasi 85,3%. Model unggul ini kemudian diimplementasikan dalam sebuah sistem rekomendasi sederhana untuk menyimulasikan strategi diskon yang optimal, yang menunjukkan kegunaan praktisnya dalam memberikan wawasan yang dapat ditindaklanjuti untuk pengambilan keputusan bisnis. Kata kunci: analisis komparatif; klasifikasi; machine learning; prediksi penjualan; SMOTE
Sentiment-Based Knowledge Discovery pada Aplikasi iPusnas Menggunakan Metode Machine Learning dan Deep Learning Ayuningtiyas, Pratiwi; Tania, Ken Ditha; Sari, Winda Kurnia
Journal of Applied Informatics and Computing Vol. 9 No. 5 (2025): October 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i5.10258

Abstract

iPusnas is a digital library application developed by the National Library of the Republic of Indonesia since 2016, with over 1.5 million users. Despite its potential to improve literacy, the application has only received a rating of 2.0. This study conducted sentiment analysis on 7.596 reviews obatained through web scraping using the Google Play Scraper Library. The data then underwent preprocessing steps including case folding, data cleaning, tokenization, stopword removal, and stemming. Reviews were automatically labeled based on the rating score, where scores of 1-3 were categorized as negative, with 5.174 entries, and scores 4-5 as positive, with 2.422 entries. The dataset was split in an 80:20 ratio, with 80% for training, and 20% for testing. The machine learning models tested were SVM, Random Forest, CNN, LSTM, and RNN. The evaluation metrics included accuracy, precision, recall, F1-score, and confusion matrix. CNN and LSTM achieved the highest accuracy (82%), Random Forest and CNN achieved the highest precision (81%), RNN the highest recall (79%) and LSTM the highest F1-score (79%). McNemar test showed a significant difference between Random Forest and CNN, Random Forest and LSTM, and between RNN and LSTM, while CNN and LSTM, as well as CNN and RNN, showed no significant difference.
Co-Authors Abdillah Putra, Muhafsyah Adeliani, Adeliani Adriansyah, Rizki Afdhal Nadzif, Muhammad Ahmad Rifai Ahmad Rifai Akbar Adiprama, Faris Akbar Kurniawan, Iqbal Akbar, Rifko Akhda, M. Dandi Al Fachrozi, Muhammad Al-Farisy, M Hadi Albukhori, M Rafli Alfarizi Ramadhiyansa, Muhammad Alfarizi, M. Ali Ibrahim Ali Ibrahim (SCOPUS ID: 57203129436) Allsela Meiriza, Allsela Alvines, Mahendi Alzena Aisha Shakira Amanda Ardhani, Dhita Amelia Amelia Amelia Putri, Shinta Amelia, Rita Anadia, Qothrunnada Wafi Ananda Khoirunnisa Andini Bahri, Cheisya Anggun Ramadina Anindya Putri, Salsa Anisa Basulina, Nur Anissa, Cahya Rahmi Apriansyah Putra Apriansyah Putra Aqil Zidane, Muhammad Aqilah Syahputra, M Fathan Archi Daffa Danendra, Muhammad Ardhillah, Onky Ari Wedhasmara Ariyani, Ishlah Putri Ariyanti, Putri Arvhi Randita Setia Athallah Ubaid, Deni Attika Putri, Shopi Audia Faradhisa Ansori Aulia, Cantika Ayuningtiyas, Pratiwi Azmi Zaky, Muhammad Azra, Muhammad Azyumardi Bahri, Cheisya Andini Baidhawi, Alif Bimmo Fathin Tammam Cahya Aulia, Syifa Cahya Rahmi Anissa Cici Elna Sari Citra, Belia Clark Peter Wijaya, Adley Constancio, Elven Dedy Kurniawan Dian Febriansyah Dwiansyah, Octa Dzaky Agusman, Muhammad Eka Saputra Eka Sevtiyuni, Putri Elna Sari, Cici Endang Lestari Ruskan Epriyanti, Nadia Fahmi Aulia Hakim, Adzka Fajaria, Mutiara Fathoni - Fatihaturrahmah, Aisyah Fatimah, Aisyah Fauzan, Muhammad Fairuz Fikri, M Fauzan Gustiani, Sindy Haidar Afif Mufid, Muhammad Hanggara, Bryan Hendrawan, Deni Agus Hermanto, Muhammad Lucky Hikmahwarani, Fellycia Ichsan Farel Rachmad, Muhammad Ikhwan Najatafani, Bintang Inayah, Anna Fadilla Indira Nailah Ramadhani Isdiani, Vensi Yeka Ispahan, Tarisha Izzan Fieldi, Muhammad Jodi Pratama, Muhammad Jonathan Pakpahan Karima, Dzakiah Aulia Karimsyah Lubis, Muhammad Khoiriyah Harahap, Dayana Kurnia Sari, Winda Lailatur Rahmi Lakeisyah, Eka Therina Lifiano Jamot Munthe, Gabriel Lubis, Muhammad Ali M Ihsan Jambak M Luthfi Khailani, Kgs Mahdiyah Afifah Sari Mahdiyah Afifah Sari Maretta, Aulia Pinkan Mariska, Inneke Via Marshella, Siti Hariza Mas Ud, Khalid Al Maulana, Rahmat Maulizidan, Muammar Ramadhani Meiriza, Allsella Miftahul Falah Mira Afrina Mufidah, Luthfiah Muhammad Adisatya Dwipansy Muhammad Dzaky Alifayoezra Muhammad Idris Muhammad Luthfi Al-Ghifari Muhammad Luthfi Al-Ghifari Munaspin, Zahra Diva Putri Nabilatulrahmah, Raihana Nachwa, Syakillah Nadrota Acta, Muhammad Fakhri Najibah Putri, Aulia Najwa Widasari, Yesya Naretha Kawadha Pasemah Gumay Nashiroh Ramadhani, Muthia Naufaldihanif, Rihan Novrizal Eka Saputra Nugraha, Allan Nuraini Kusuma, Aisha Onkky Alexander Pacu Putra Prasetia, Dika Pratiwi, Metti Detricia Purba, Kevin Agustin Putri Ariyanti Putri Casanova, Musdalifa Putri Mutiara Arinie Putri Silpiara Putri, Amelia Rizki Putri, Aulia Najibah Putri, Naila Raihana Putri, Salsa Anindya Putri, Shelly Raditya Dafa Rizki Rafika Octaria Ningsih Rafli Maulana, Muhammad Rahmah, Atika Nur Rahman, M. Fadhil Rahmat Izwan Heroza Ramadhan Putra Pratama, Muhammad Ramadhani, Indira Nailah Rangga Aderiyana, Fakih Ravi Wijayanto, Muhammad Riansyah, Muhammad Bintang Naufal Risyahputri, Aliyananda Rizka Mumtaz, Fadia Rizki Ade Ningsih Rizky Herdiansyah, Muhammad Rizkyllah, Anabel Fiorenza Robani, M Tsabita Rositiani, Ely Sabar Manahan, Nico Sabila, Amalia Sahira, Mutia Salsabila, Adella Salsabila, Shofi Sanjaya, Riska Amelia Saputra, Marco Sasmita, Ruth Mei Septhia Charenda Putri Sevtiyuni, Putri Eka Siade, Shalya Yunia Siregar, Richi Nauli Juniarto Suci Amalia Suci Fitriani, Suci Syarief Albani, Muhammad Theresia Pardede, Eva Theressa Hasioani Sianturi, Claudia Tika Octri Dieni Titiana, Nuke Merisca Tri Zafira, Zahra Triana, Ayu Triputra, Muhamad Meiko Tsabitah, Laila Wahyuni Cahnia Sari Wilantara, M Pandu Winda Kurnia Sari Wirnanti, Rintan Wulan Dari, Atikah Yasir Alghifari, Muhammad Yasyfi Imran, Athallah Zahran Afif, Muhammad Zidan, Umar Rahman