Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal Of Artificial Intelligence And Software Engineering

Comparison of Random Forest, Decision Tree, and XGBoost Models in Predicting Student Academic Success Nurbaeti, Nurbaeti; Sulistiyaningsih, Neny; Rismayati, Ria
Journal of Artificial Intelligence and Software Engineering Vol 5, No 3 (2025): September
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i3.7138

Abstract

Students' academic success is influenced by various academic and non-academic factors. Machine learning (ML) offers an effective approach to predicting academic outcomes by analyzing complex data patterns. However, most previous studies are limited to graduation prediction and rarely incorporate non-academic features or multiple feature selection techniques. This study aims to compare the performance of three ML algorithms Random Forest, Decision Tree, and XGBoost in classifying students’ academic success using a dataset from the UCI Machine Learning Repository, consisting of 4424 records and 37 features. The data underwent cleaning, label transformation, and feature selection using PCA, SelectKBest, and Variance Threshold. Models were trained using a holdout method (80% training, 20% testing) and evaluated based on accuracy, precision, recall, and F1-score. The results show that Random Forest with Variance Threshold achieved the highest accuracy (0.77) and F1-score (0.84) on majority classes. XGBoost followed with 0.75 accuracy, while Decision Tree showed the lowest performance. All models struggled to classify the minority class, indicating challenges related to data imbalance. This research highlights the importance of algorithm choice and effective feature selection in academic classification tasks. It also emphasizes the need for data balancing strategies to reduce class bias. The findings can help educational institutions design data-driven interventions to improve learning outcomes and reduce dropout rates.
Co-Authors A. Rezky Amelia AP Abdul Bari Adam Rachmatullah Adhi Trirachmadi Mumin Ahmad Badawi Saluy Akhsani, Novi Amalia Mustika, Amalia Amrulah, Amrulah Amrullah Amrullah Amrullah Amrullahi Anita Swantari, Anita Asep Saepuloh Ayu Wahyuningputri, Rode Betanika Nila Nirbita Boediman, Surya Fadjar Busthan Azikin Defrita Metasari Devita Gantina Dewantara, Yudhiet Fajar Dina Mayasari Soeswoyo, Dina Mayasari Doni Muhardiansyah Emenina Tarigan Eriyan, Muhamad Adri Fachrul Husain Habibie, Fachrul Husain Fetty Asmaniati Fitriani, Yessi Gratia Wirata Laksmi Happy Fitria, Happy Hargiani, Fransisca Xaveria Hasanah, Ade Nurul Henny Saraswati Henny Saraswati Heny Ratnaningtyas Ibrahim Ibrahim Irawati, Wiwit Jajang Gunawijaya Jajang Gunawijaya, Jajang Janianton Damanik Julita Julita Juwita, Rekke Kasim, Erna Kusdian, Eri Zam Zam Latif, B Syarifuddin Levyta, Farah Linda Desafitri RB Malda Komala Mbura, Helend A Melianah Anggreani Morena, Mochammad Rian Ahdian Muhammad Baiquni Muhardiansyah , Doni Myrza Rahmanita Nopirin Nopirin Nova Putra, Aditya Novita Widyastuti Sugeng Nur Azizah Nur Chairunnissa Nurdin Nurdin Nurhayati Nurhayati Nurmalinda, Elda Osman, Ismeth Emier Pelliyezer Karo Karo Pinontoan, Nexen Alexandre Purwanti Dyah Pramanik Rachman, Arief Faizal Rahmat Indra Pratama Anom Rahmat Ingkadijaya Ramdani, Nadia Rahma Renanda, Alfiyyah Zalfah Rima Rachmayani Rina Suprina Rismayati, Ria Samsuddin Samsuddin Saptarining Wulan Setyawati, Wiwit Sri Mariati Sugeng, Novita Widyastuti Sulistiyaningsih, Neny Sundring Pantja Djati Surya Fajar Budiman Suzanalisa Suzanalisa Syarifuddin Syarifuddin Tri Djoko Sulistiyo, Tri Djoko Triana Rosalina Dewi Vienna Artina Sembiring, Vienna Artina Wahyu Hidayat Willy Arafah, Willy yunardi yunardi