Claim Missing Document
Check
Articles

STRUCTURAL EQUATION MODELING ANALYSIS ON POVERTY IN WEST KALIMANTAN WITH FINITE MIXTURE IN PARTIAL LEAST SQUARE APPROACH Fauzan, Muhammad; Perdana, Hendra; Satyahadewi, Neva
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 20 No 1 (2026): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol20iss1pp0001-0016

Abstract

Poverty occurs when individuals or groups lack the necessary resources to fulfill their basic needs. In Indonesia, including West Kalimantan, poverty remains a significant issue influenced by various socio-economic factors. This study aims to identify valid and reliable indicators of poverty and classify regencies/cities in West Kalimantan using the 2023 data from the Central Statistics Agency of West Kalimantan and Indonesia. The analysis applies the Structural Equation Modeling approach with Finite Mixture in Partial Least Squares (FIMIX-PLS). From 19 observed indicators, only 12 were found valid and reliable based on measurement and structural model evaluation. The structural model reveals three significant relationships: the Economy significantly influences Poverty, Health influences Education, and Education influences the Economy. Based on the FIMIX-PLS results, the regencies/cities are segmented into four groups with distinct structural characteristics. Segment 1 reflects the influence of Health on Education, Segment 2 reflects the influence of Health on the Economy, Segment 3 highlights the influence of Economy on Poverty, and Segment 4 captures the influence of Education on the Economy. Detailed interpretations of each segment and their policy implications are presented in the conclusion. The results support the importance of tailored poverty alleviation strategies based on latent regional characteristics and validated model findings.
SEGMENTING MATERNAL AND CHILD HEALTH DEGREE IN INDONESIA USING SEM-PLS POS Nurhanifa, Nurhanifa; Perdana, Hendra; Satyahadewi, Neva
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 20 No 2 (2026): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol20iss2pp0897-0912

Abstract

Maternal and child health represents a critical aspect of national development, reflecting both the well-being of the population and the success of regional health equity programs. In Indonesia, disparities in maternal and child health outcomes remain evident across provinces due to socio-economic inequalities and unequal access to health services. This study aims to model the causal relationships between key health determinants and classify provinces based on maternal and child health degree using Structural Equation Modeling with Partial Least Squares (SEM-PLS) combined with Prediction-Oriented Segmentation (POS). The study uses secondary data from 2023 sourced from the Central Statistics Agency (BPS) and the Ministry of Health, covering 34 provinces at the provincial level. Nineteen indicators are grouped into four latent variables: Health Services, Clean and Healthy Living Behavior (PHBS), Environment, and Health Degree. SEM-PLS was applied to identify direct and indirect relationships among these variables, while POS was used to identify homogeneous segments of provinces. The results show that PHBS positively affects Environment (path coefficient = 0.896; p < 0.001), while Health Services negatively affect Health Degree (path coefficient = –0.668; p < 0.01), indicating the presence of indirect pathways influencing health outcomes. The segmentation analysis identified three segments: Segment 1 includes provinces with moderate outcomes but weak child health services; Segment 2 includes provinces with relatively better maternal outcomes but sanitation gaps; Segment 3 consists of provinces with the most critical health conditions, including high stunting and malnutrition rates. These findings demonstrate that PHBS is a dominant influencing factor, while improved service access alone does not always translate to better outcomes. The SEM-POS approach effectively identifies segment-specific health disparities, supporting more targeted policy interventions to improve maternal and child health in Indonesia.
Pemodelan Persentase Penduduk Miskin menggunakan Regresi Data Panel Hausman-Taylor (Studi Kasus: Kabupaten/Kota di Provinsi Kalimantan Barat Tahun 2020-2024) Azura, Tina; Perdana, Hendra; Yudhi, Yudhi
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 14, No 6 (2025): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v14i6.103657

Abstract

Dalam analisis ekonometrika, pemilihan metode estimasi yang tepat sangat penting untuk menghasilkan parameter yang konsisten dan efisien, khususnya pada data panel yang mengandung variabel time invariant dan potensi korelasi antara variabel independen dengan efek individu yang tidak teramati. Penelitian ini bertujuan untuk menerapkan metode Hausman-Taylor sebagai pendekatan alternatif dalam melakukan estimasi parameter pada model regresi data panel untuk mengatasi keterbatasan model fixed effect dan model random effect. Metode penelitian meliputi analisis deskriptif data, penentuan model regresi data panel, serta melakukan estimasi parameter data panel Hausman-Taylor dengan mengelompokkan variabel independen menjadi variabel time invariant dan time variant. Sumber data yang digunakan adalah data sekunder yang dipublikasikan oleh BPS Kalimantan Barat, berupa data persentase penduduk miskin di 14 kabupaten/kota selama periode 2020-2024. Variabel yang digunakan adalah Persentase Penduduk Miskin (Y), Tingkat Pengangguran Terbuka (x_1), Laju Pertumbuhan Penduduk (x_2), Rasio Ketergantungan (x_3), Upah Minimum Kabupaten/Kota (x_4), Rata-rata Lama Sekolah (x_5). Hasil estimasi menunjukkan bahwa nilai koefisien determinasi sebesar 54,58% dengan model yang terbentuk, yaitu PMM_it=0,041552TPT_it+0,020392LPP_it+0,012257RK_i-0,0000009UMK_it-1,0676RLS_i+ε_i. Variabel yang secara statistik berpengaruh signifikan terhadap persentase penduduk miskin, yaitu upah minimum kabupaten/kota dan rata-rata lama sekolah. Hasil penelitian ini menunjukkan bahwa model Hausman-Taylor mampu mengakomodasi keterbatasan model panel konvensional dan memberikan hasil estimasi yang tidak bias, konsisten, serta efisien.
Co-Authors Al Amin Alatin, Isam Aldien, Royan Gustio Alex Sander Almazmar, Giatul Khodijah Hodijah Andani, Wirda Andi Hairil Alimuddin Anggi Putri Dewi Anggi, Muhamad Anis Fakhrunnisa Annisa Fitri Antoni, Frans Xavier Natalius Apriliyani, Techa Aprizkiyandari, Siti Ariady Zulkarnain Arsyi, Fritzgerald Muhammad Assa Trissia Rizal Atikasari, Awang Atlantic, Virginnia Aulia Puteri Amari Azura, Tina Calissta, Leanna Belva Cesoria, Yola Zerlinda Crismayella, Yuveinsiana Dadan Kusnandar Dadan Kusnandar Dadan Kusnandar Dadan Zaliluddin Debataraja, Naomi Nessyana Dedi Rosadi Deni Wardani Dinda Lestari Dwi Nining Indrasari Dzakirah, Nasya Rabbi Eka Rizki Wahyuni Elga Fitaloka Endah Saraswi Ersawahyuni, Aisna Evi Noviani Evy Sulistianingsih Faizah, Putri Alya Nur Fajar, Arif Nur Fallah, Khalishah Ghina Febriani, Nindy Febriani, Rani Febriyanto, Ferdy Fery Prastio Fidianty, Fadilla Firhan Januardi Firman Saputra Fortuna, Nia Fitriana Gilang Habibie Gunawan, Sucipto Hafifah, Nanda Handayani, Aditya Hapipah, Liza Darojatul Hariadi, Wahyudio Shaney Fikri Harnanta, Nabila Izza Hasanah, Kutsiatul Hasanuddin Hasanuddin Helmi Helmi Hidayat, Rani Lestari HUDA, NUR’AINUL MIFTAHUL Huriyah, Syifa Khansa Iman Sanjaya Imanni, Rahmania Andarini Hatti Imro'ah, Nurfitri IMRO’AH, NURFITRI Imtiyaz, Widad Indriani, Maria Meilinda Ira Mona Irwanto, Dicky Ismi Adam Jajad Sudrajat Jawani Jawani Juniarti, Leni Khabib Mustofa Laksono Trisnantoro Lilit Tamara Dinta Lisa Lestari M. Deny Hafizzul Muttaqin Ma’ruf, Ikhwan Maisarah Maisarah Margaretha, Ledy Claudia Mariana Yopi Mariatul Kiftiah Martha, Shantika Marwalida Rachmadiar Maulida Amanasari Mega Tri Junika Mida Mida Millennia Taraly Misrawi Misrawi Muhamad Ikbal Muhammad Ahyar Muhammad fauzan Muhardi Muhtadi, Radhi Mursyidah, Lailatul Mutiara Nurisma Rahmadhani Nabilah, Niken Aushaf Nanda Ayuni Nanda Shalsadilla Naomi Nessyana Debataraja Naomi Nessyana Debataraja Neva Satyahadewi Novita, Irene Nugrahaeni, Indah Nur Asiska Nur Azmi Nurfitri Imro'ah Nurfitri Imro’ah Nurhanifa, Nurhanifa Nurin Hafizah Nurmaulia Ningsih Nurul Huda Padilah, Ariski Paisal Paisal Pinasari, Repi Pitriani Pitriani Pranata Anggi Puji Ardiningsih Puspita, Risma Putri, Vinna Septyara Qalbi Aliklas Rafika Aufa Hasibuan Rahman, Tri Wanda Rahmania Andarini Hatti Imanni Rahmasari, Yulia Ramadhan, Nanda Ratna Nursariyani Ratna Sari Dewi Reni Unaeni Retnani, Hani Dwi Ria Fuji Astuti Rina Rina Risa Nofiani Risko, Risko Rivaldo, Rendi Rizki, Setyo Wira Robbiati, Dian Roeswandi, Irine Fajrin Rofatunnisa, Sifa Sadikin, Utin Azwa Sayhani Salsabila, Hana Samson Samson Santika Santika Sasqia Aklysta Antaristi Sesilisvana, Nevil Setyo Wir Rizki Setyo Wira Rizki Setyo Wira Rizki Setyo Wira Rizki Shantika Martha Shantika Martha Shantika Martha Silvia Andriany Sinaga, Steven Jansen Sindia, Eri Sintia Margun Siti Julaeha, Siti Siti Septiani Rahayu Putri Solly Aryza Suci Angriani Suhardi Suprianto, Okto syuradi, Syuradi Tamtama, Ray Taraly, Inggriani Millennia Thariq Thariq Tiara, Dinda Titania Aurellia Trifaiza, Fadhela Wafiq Nurhaliza Wahyu Diyan Ramadana Wilda Ariani Wira Fujiyanto Enizar Wirda Andani Wirdha Eryani Yogi, Vinsensius Yohane, Novi Yonatan, Yulianus Yopi Saputra Yudhi Yumna Siska Fitriyani Yundari, Yundari Yundari, Yundari Yustosio, Darwis Yuveinsiana Crismayella Zahidah, Zahra