p-Index From 2021 - 2026
12.91
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Dinamik Jurnal Ilmu Komputer dan Informasi Jurnal Masyarakat Informatika Jurnal Sains dan Teknologi Semantik Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics Prosiding Seminar Nasional Sains Dan Teknologi Fakultas Teknik JUTI: Jurnal Ilmiah Teknologi Informasi Prosiding SNATIF Journal of ICT Research and Applications Teknika: Jurnal Sains dan Teknologi Jurnal Informatika dan Teknik Elektro Terapan Scientific Journal of Informatics JAIS (Journal of Applied Intelligent System) Proceeding SENDI_U Jurnal Ilmiah Dinamika Rekayasa (DINAREK) Proceeding of the Electrical Engineering Computer Science and Informatics Jurnal Teknologi dan Sistem Komputer Sinkron : Jurnal dan Penelitian Teknik Informatika SISFOTENIKA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control InComTech: Jurnal Telekomunikasi dan Komputer Jurnal Eksplora Informatika JOURNAL OF APPLIED INFORMATICS AND COMPUTING MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer English Language and Literature International Conference (ELLiC) Proceedings Infotekmesin Jurnal Mnemonic Abdimasku : Jurnal Pengabdian Masyarakat SKANIKA: Sistem Komputer dan Teknik Informatika Jurnal Teknik Informatika (JUTIF) Jurnal Program Kemitraan dan Pengabdian Kepada Masyarakat Journal of Soft Computing Exploration Advance Sustainable Science, Engineering and Technology (ASSET) Prosiding Seminar Nasional Hasil-hasil Penelitian dan Pengabdian Pada Masyarakat Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Seminar Nasional Teknologi dan Multidisiplin Ilmu Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Scientific Journal of Informatics LogicLink: Journal of Artificial Intelligence and Multimedia in Informatics Seminar Nasional Riset dan Teknologi (SEMNAS RISTEK) Advance Sustainable Science, Engineering and Technology (ASSET) INOVTEK Polbeng - Seri Informatika
Claim Missing Document
Check
Articles

Jasmine Flower Classification with CNN Architectures: A Comparative Study of NasNetMobile, VGG16, and Xception in Agricultural Technology Danar Bayu Adi Saputra; Christy Atika Sari; Eko Hari Rachmawanto
Advance Sustainable Science Engineering and Technology Vol. 6 No. 4 (2024): August-October
Publisher : Science and Technology Research Centre Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v6i4.790

Abstract

Jasmine flowers have many benefits and uses such as for traditional medicine, tea, perfume, cosmetics, decoration, and others. in the selection of fresh jasmine flowers for making tea is very important, currently the classification of jasmine flowers for making tea is mostly still using manual methods. Often influenced by individual preferences, opinions, or biases. this causes a lack of objectivity and uncertainty in the classification of jasmine flowers. The manual method is very weak due to human visual limitations and fatigue levels which can result in less than the optimal jasmine flower classification. Therefore, in the research that has been done, a transfer learning system was applied that can classify fresh jasmine flowers with rotten jasmine flowers. This study aims to compare three different Convolutional Neural Network architectures: NasNetMobile, VGG16, and Xception. The results on the three architectures can show maximum results, namely 99.21% for NasNetMobile, 98.69% for VGG16 and 97.91% for Xception. This study provides insight into the classification of good and bad jasmine flowers to encourage further exploration in the field of agriculture.
Enhancing Face Detection Performance In 360-Degree Video Using Yolov8 with Equirectangular Augmentation Techniques Ardy, Rizky Damara; Yuniarti, Anny; Sari, Christy Atika
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 23, No. 1, January 2025
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v23i1.a1255

Abstract

This study aims to enhance face detection performance in 360-degree videos by utilizing advanced image augmentation techniques with the YOLOv8 algorithm, which is effective for real-time object detection. Acknowledging the unique challenges posed by equirectangular projection, this research introduces a novel equirectangular augmentation method specifically designed for this medium. Our findings demonstrate a remarkable 1.346% improvement in detection accuracy in Equirectangular Projection (ERP) settings compared to default YOLOv8 augmentation strategies. This significant enhancement not only addresses the geometric distortions inherent in panoramic video formats but also emphasizes the critical need for tailored augmentation approaches to improve face detection in complex environments. By showcasing the effectiveness of these customized methods, this research contributes to the growing field of deep learning applications for immersive video technologies, with implications for sectors like security, virtual reality, and interactive media. Ultimately, this work highlights the potential of innovative augmentation techniques to ensure robust face detection in challenging visual contexts.
Implementasi E-Arsip Untuk Penyimpanan Dokumen Digital Pada PT BPD Jateng (Bank Jateng) Nilawati, Florentina Esti; Rizal, Mohammad; Rachmawanto, Eko Hari; Setiadi, De Rosal Ignatius Moses; Sari, Christy Atika
Techno.Com Vol. 18 No. 4 (2019): November 2019
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1058.177 KB) | DOI: 10.33633/tc.v18i4.2508

Abstract

Bank Pembangunan Daerah Jawa Tengah merupakan Bank milik Pemerintah Provinsi Jawa Tengah bersama-sama dengan Pemerintah Kota/Kabupaten Se-Jawa Tengah. Seiring dengan kemajuan teknologi pengarsipan di Bank Pembangunan Daerah Jawa Tengah memerlukan digitalisasi dalam hal pengarsipan data. Pengarsipan data adalah proses memindahkan data yang tidak aktif lagi digunakan ke perangkat penyimpanan terpisah untuk jangka panjang. Data arsip terdiri dari data lama, serta data yang harus dipertahankan untuk kepatuhan terhadap peraturan. Arsip data diindeks dan memiliki kemampuan pencarian sehingga file dan bagian file dapat dengan mudah ditemukan dan diambil. Backup data digunakan sebagai mekanisme pemulihan data yang bisa digunakan untuk mengembalikan data jika rusak atau hancur. Sebaliknya, arsip data melindungi informasi lama yang tidak diperlukan untuk operasi sehari-hari namun mungkin harus diakses sesekali. Arsip data berfungsi untuk mengurangi konsumsi penyimpanan primer dan biaya terkait, daripada bertindak sebagai mekanisme pemulihan data. Beberapa arsip data memperlakukan data sebagai read-only untuk melindunginya dari modifikasi, sedangkan data lain produk pengarsipan memperlakukan data sebagai read / write. Dengan dibangunnya e-Arsip pada PT. Bank Pembangunan Daerah Jawa Tengah (Bank Jateng) diharapkan di kemudian hari untuk proses pencarian dan penyimpanan data dapat dilakukan dengan mudah, sehingga dapat menghemat waktu dan tenaga pada proses pencarian arsip.
Quality Improvement for Invisible Watermarking using Singular Value Decomposition and Discrete Cosine Transform Danang Wahyu Utomo; Christy Atika Sari; Folasade Olubusola Isinkaye
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 23 No. 3 (2024)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i3.3744

Abstract

Image watermarking is a sophisticated method often used to assert ownership and ensure the integrity of digital images. This research aimed to propose and evaluate an advanced watermarking technique that utilizes a combination of singular value decomposition methodology and discrete cosine transformation to embed the Dian Nuswantoro University symbol as proof of ownership into digital images. Specific goals included optimizing the embedding process to ensure high fidelity of the embedded watermark and evaluating the fuzziness of the watermark to maintain the visual quality of the watermarked image. The methods used in this research were singular value decomposition and discrete cosine transformation, which are implemented because of their complementary strengths. Singular value decomposition offers robustness and stability, while discrete cosine transformation provides efficient frequency domain transformation, thereby increasing the overall effectiveness of the watermarking process. The results of this study showed the efficacy of the Lena image technique in gray scale having a mean square error of 0.0001, a high peak signal-to-noise ratio of 89.13 decibels (dB), a universal quality index of 0.9945, and a similarity index structural of 0.999. These findings confirmed that the proposed approach maintains image quality while providing watermarking resistance. In conclusion, this research contributed a new watermarking technique designed to verify institutional ownership in digital images, specifically benefiting Dian Nuswantoro University. It showed significant potential for wider application in digital rights management.
A Combination of SHA-256 and DES for Visual Data Protection Wintaka, Aristides Bima; Sari, Christy Atika; Rachmawanto, Eko Hari; Ali, Rabei Raad
Jurnal Masyarakat Informatika Vol 16, No 1 (2025): May 2025
Publisher : Department of Informatics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jmasif.16.1.72615

Abstract

This study employs SHA-256 and DES algorithms to safeguard visual data through encryption and decryption processes. Research findings demonstrate that this method provides robust security with image histograms that are difficult to recognize and randomly encrypted. The MSE and PSNR values approximate 105 and 48, indicating that the decryption image quality closely resembles the original due to these relatively high values, which are considered excellent. The SSIM value of 1 which indicates no difference in structure, luminance, or contrast between images. Entropy and N.C values approach 8 and 0.92, respectively, suggesting pixel complexity within image with favorable pixel distribution. This technique prove effective for protecting confidential images and digital documents.
A Comparative Analysis of Convolutional Neural Network (CNN): MobileNetV2 and Xception for Butterfly Species Classification Pradnyatama, Mehta; Sari, Christy Atika; Rachmawanto, Eko Hari; Islam, Hussain Md Mehedul
Jurnal Masyarakat Informatika Vol 16, No 1 (2025): May 2025
Publisher : Department of Informatics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jmasif.16.1.72957

Abstract

This study aims to compare the effectiveness and efficiency of two convolutional neural network architectures, MobileNetV2 and Xception, for automated butterfly species classification. As biodiversity monitoring gains significance, effective species identification technologies are crucial for conservation. The research utilized a dataset of 100 butterfly species with 12,594 training images and 1,000 validation and test images. Transfer learning with pre-trained ImageNet weights was implemented, and both models were enhanced with custom classification layers. Data augmentation and class weighting mitigated dataset imbalance issues. Experimental results show Xception attained 93.40% test accuracy compared to MobileNetV2's 93.20%. These high accuracy rates were achieved through effective transfer learning that preserved general feature extraction capabilities, comprehensive class balancing techniques, and carefully tailored learning rate strategies for each architecture. Despite minimal performance difference, MobileNetV2 offers significant computational efficiency advantages with 4.15M parameters compared to Xception's 25.27M, while Xception provides marginally better classification. This study contributes to entomological research and highlights trade-offs between model complexity and performance in fine-grained classification tasks, supporting implementation decisions for butterfly identification systems in practical applications.
Schizophrenia Classification using Fuzzy K-Nearest Neighbour on Patient Data from RSJD Dr. Amino Gondohutomo Ozagastra Caluella Prambudi; Ajib Susanto; Christy Atika Sari
INOVTEK Polbeng - Seri Informatika Vol. 10 No. 2 (2025): July
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/t2mfvf14

Abstract

Schizophrenia is a complex mental disorder with overlapping symptoms, making subtype diagnosis uncertain. This study aims to develop an automated classification method for schizophrenia subtypes using the Fuzzy K-Nearest Neighbour (FKNN) algorithm, which effectively handles uncertainty in medical data. The dataset includes 300 patients from RSJD Dr. Amino Gondohutomo, Central Java, aged 18–60 years, with balanced gender distribution. Four subtypes—paranoid, catatonic, hebephrenic, and undifferentiated—were classified. Symptom and demographic data were encoded and normalised using min-max scaling. The model was trained using k = 5 and evaluated via 10-fold cross-validation. The results achieved 94% accuracy with high precision and recall across all classes. However, limitations include a relatively small and single-source dataset and the lack of ROC/AUC analysis. These findings suggest that FKNN has strong potential as a data-driven decision support system for schizophrenia diagnosis, suitable for integration into psychiatric hospital information systems. Future research should explore oversampling techniques such as SMOTE and threshold tuning to improve model sensitivity.
Improved imperceptible engagement-based 2D sigmoid logistic maps, Hill cipher, and Kronecker XOR product Lestiawan, Heru; Sani, Ramadhan Rakhmat; Abdussalam, Abdussalam; Rachmawanto, Eko Hari; Purwanto, Purwanto; Sari, Christy Atika; Doheir, Mohamed
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.8331

Abstract

Image encryption is a crucial facet of secure data transmission and storage, and this study explores the efficacy of combining sigmoid logistic maps (SLM), Hill cipher, and Kronecker's product method in enhancing image encryption processes. The evaluation, conducted on diverse images such as Lena, Rice, Peppers, Cameraman, and Baboon, unveils noteworthy findings. The Lena image emerges as the most successfully encrypted, as evidenced by the lowest mean squared error (MSE) at 92.81 and the highest peak signal-to-noise ratio (PSNR) at 19.43, reflecting superior fidelity and quality preservation. Additionally, the encryption of 64×64 pixels images consistently demonstrate robustness, with a high number of pixels change rate (NPCR) and unified average change intensity (UACI) values, particularly notable for the Cameraman image. Even for 128×128 pixels images, commendable encryption performance persists across the tested images. The amalgamation of SLM, Hill cipher, and Kronecker's product emerges as an effective strategy for balancing security and perceptual quality in image encryption, with the Lena image consistently outperforming others based on comprehensive metrics. This research provides valuable insights for future studies in the dynamic domain of image encryption, emphasizing the potential of advanced cryptographic techniques in ensuring secure multimedia communication.
Hybrid image encryption using quantum bit-plane scrambling and discrete wavelet transform Rachmawanto, Eko Hari; Susanto, Ajib; Hermanto, Didik; Sari, Christy Atika; Setiarso, Ichwan; Sarker, Md Kamruzzaman
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.8887

Abstract

Digital image security is increasingly vulnerable to sophisticated attacks, underscoring the urgent need for robust encryption techniques. Traditional encryption methods often fall short in defending against advanced threats, highlighting the importance of innovative solutions to protect digital images. This study tackles these challenges by incorporating quantum computing into image encryption, employing techniques such as bit-plane scrambling, pixel permutation, and bit permutation. These strategies enhance security by introducing complex, non-linear transformations that make decryption attempts significantly more difficult without the correct cryptographic keys. A key configuration based on r=44, μ=2024 is employed to achieve this. The integration of quantum bit-plane scrambling and quantum pixel permutation results in a highly secure encryption method. Experimental results show substantial improvements in entropy levels, along with strong unified average changing intensity (UACI) and number of pixels change rate(NPCR) values across various images. Notably, the "Peppers" image achieved the best performance, with UACI values of 33.5572 and NPCR values of 99.8301. The method proves highly effective, as repeated tests with incorrect keys failed to decrypt the plain image accurately. Future research could explore the addition of a discrete quantum wavelet transform to further enhance the security and efficiency of quantum-based image encryption methods.
Identifikasi Citra Jenis Rempah-Rempah Menggunakan Arsitektur RestNet50 Sari, Christy Atika; Pradana, Luthfiyana Hamidah Sherly; Rachmawanto, Eko Hari
LogicLink Vol. 2 No. 1, Juni 2025
Publisher : Universitas Islam Negeri K.H. Abdurrahman Wahid Pekalongan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28918/logiclink.v2i1.10713

Abstract

Indonesia has various types of spices used in culinary and traditional medicine. However, changes in lifestyle and modernization have made it increasingly difficult for the younger generation to recognize spices directly. Conventional identification still relies on manual observation which is prone to errors. Therefore, an artificial intelligence-based solution is needed to improve the accuracy of spice classification. This study applies the Convolutional Neural Network (CNN) method with the ResNet50 architecture, which is part of Deep Learning, to classify digital images of spices. This model utilizes Computer Vision to recognize visual patterns, Transfer learning to improve training efficiency, and Data Augmentation Techniques such as rotation, flipping, and scaling to improve model robustness. Evaluation using Confusion Matrix was carried out with various dataset division scenarios, including ratios of 90:10, 80:20, 70:30, 60:40, and 50:50. The experimental results showed that the model with a ratio of 90:10 provided the best accuracy, reaching 98.04%, with high precision, recall, and F1-score. In conclusion, the CNN method with ResNet50 has proven effective in identifying spices based on digital images. Further development can be done by adding variations of datasets and exploring other Deep Learning architectures to improve model performance.
Co-Authors AA Sudharmawan, AA Abdussalam Abdussalam Abdussalam Abdussalam, Abdussalam Abiyyi, Ryandhika Bintang Agustina, Feri Ahmad Salafuddin Ajib Susanto Akbar, Fadhilah Aditya Akbar, Ilham Januar Alfany, Fauzan Maulana Ali, Rabei Raad Alifia Salwa Salsabila Alvian Ideastari, Nukat Alvin Faiz Kurniawan Anak Agung Gede Sugianthara Andi Danang Krismawan Anggraeny, Tiara Annisa Sulistyaningsih Anny Yuniarti Antonius Erick Handoyo Ardy, Rizky Damara Ardyani, Salma Shafira Fatya Arfian, Aldi Azmi Ariska, Ratih Aryanta, Muhammad Syifa Aryaputra, Firman Naufal Astuti, Yani Parti Auni, Amelia Gizzela Sheehan Azzahra, Fidela Bambang Sugiarto Briliantino Abhista Prabandanu Budi Harjo Cahaya Jatmoko Cahyo, Nur Ryan Dwi Candra Irawan Candra Irawan Chaerul Umam Chaerul Umam Cinantya Paramita D.R.I.M. Setiadi Danang Krismawan, Andi Danang Wahyu Utomo Danar Bayu Adi Saputra Danu Hartanto Daurat Sinaga Daurat Sinaga De Rosal Ignatius Moses Setiadi Desi Purwanti Kusumaningrum Desi Purwanti Kusumaningrum Desi Purwanti Kusumaningrum Didik Hermanto Doheir, Mohamed Doheir, Mohamed Doheir, Mohamed A S Dwi Puji Prabowo Edi Faisal Egia Rosi Subhiyakto Egia Rosi Subhiyakto Eko Hari Rachmanto Eko Hari Rachmawanto Eko Septyasari Elkaf Rahmawan Pramudya Ericsson Dhimas Niagara Erika Devi Udayanti Erlin Dolphina Erna Daniati Erna Zuni Astuti Ery Mintorini Etika Kartikadarma Farrel Athaillah Putra Fidela Azzahra Florentina Esti Nilawati Florentina Esti Nilawati Florentina Esti Nilawati Folasade Olubusola Isinkaye Folasade Olubusola Isinkaye Giovani Ardiansyah Gumelar, Rizky Syah Guruh Fajar Shidik Gusta, Muhammad Bima Hadi, Heru Pramono Haqikal, Hafidz Hartono, Matthew Raymond Haryanto, Christanto Antonius Haryanto, Christanto Antonius Hasbi, Hanif Maulana Hayu Wikan Kinasih Heru Lestiawan Heru Lestiawan Himawan, Reyshano Adhyarta Hyperastuty, Agoes Santika Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ifan Rizqa Ihya Ulumuddin, Dimas Irawan Ikhsanuddin, Rohmatulloh Muhamad Imam Prayogo Pujiono Inzaghi, Reza Bayu Ahmad Isinkaye, Folasade Olubusola Islam, Hussain Md Mehedul Istiqomah, Annisa Ayu Ivan Stepheng Kamila, Izza Putri Kas Raygaputra Ilaga Krismawan, Andi Danang Kumala, Raffa Adhi Kurniawan, Nicholas Alfandhy Kusuma, Edi Jaya Kusuma, Mohammad Roni Kusumawati, Yupie L. Budi Handoko Laksana, Deddy Award Widya Lalang Erawan Latifa, Anidya Nur Liya Umaroh Liya Umaroh, Liya Lucky Arif Rahman Hakim Mabina, Ibnu Farid Maulana Malik Ibrahim Al-Ghiffary Md Kamruzzaman Sarker Md Kamruzzaman Sarker Meitantya, Mutiara Dolla Mohamed Doheir Mohammad Rizal, Mohammad Mohd Yaacob, Noorayisahbe Muchamad Akbar Nurul Adzan Muhammad Rikzam Kamal Mulyono, Ibnu Utomo Wahyu Mulyono, Ibnu Utomo Wahyu Munis Zulhusni Musfiqur Rahman Sazal Muslih Muslih Nabila, Qotrunnada Neni Kurniawati Ningrum, Amanda Prawita Nisa, Yuha Aulia Noor Ageng Setiyanto Noor Ageng Setiyanto, Noor Ageng Noorayisahbe Mohd Yacoob Nova Rijati Nugroho, Widhi Bagus Nur Ryan Dwi Cahyo Oktaridha, Harwinanda Oktayaessofa, Eqania Ozagastra Caluella Prambudi Parti Astuti, Yani parti astuti, yani Parti Astuti, Yani Parti Astuti1, Yani Parti Astuti1, Yani Permana langgeng wicaksono ellwid putra Pradana, Luthfiyana Hamidah Sherly Pradana, Rizky Putra Pradnyatama, Mehta Praskatama, Vincentius Pratama, Zudha Pratiwi, Saniya Rahma Prayogi, Arditya Pulung Nurtantio Andono Purwanto Purwanto Puspa, Silfi Andriana Putri Mega Arum Wijayanti Rabei Raad Ali Rahmalan, Hidayah Raisul Umah Nur Ramadhan Rakhmat Sani Ratih Ariska Robert Setyawan Sabilillah, Ferris Tita Saifullah, Zidan Salma Shafira Fatya Ardyani Salsabila, Alifia Salwa Sania, Wulida Rizki Santoso, Bagus Raffi Saputra, Danar Bayu Adi Sari, Wellia Shinta Sari Shinta Sarker, Md Kamruzzaman Sarker, Md. Kamruzzaman Setiarso, Ichwan Setiawan, Fachruddin Ari Shelomita, Viki Ari Sinaga, Daurat Sinaga, Daurat Sinaga, Daurat Sofyan, Ega Adiasa Solichul Huda, Solichul Sudibyo, Usman Sudibyo, Usman Sudibyo, Usman Sugianto, Castaka Agus Sumarni Adi, Sumarni Suprayogi Suprayogi Suprayogi Suprayogi Sutrisno, Hendra Syabilla, Mutiara Syafira, Zahra Ghina Tan Samuel Permana Tan Samuel Permana Tiara Anggraeny Titien Suhartini Sukamto Umah Nur, Raisul Umaroh, Liya Umaroh, Liya Utomo, Danang Wahyu Velarati, Khoirizqi Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Wintaka, Aristides Bima Yaacob, Noorayisahbe Mohd Yani Parti Astuti Yupie Kusumawati Zaenal Arifin Zulhusni, Munis