p-Index From 2021 - 2026
12.91
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Dinamik Jurnal Ilmu Komputer dan Informasi Jurnal Masyarakat Informatika Jurnal Sains dan Teknologi Semantik Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics Prosiding Seminar Nasional Sains Dan Teknologi Fakultas Teknik JUTI: Jurnal Ilmiah Teknologi Informasi Prosiding SNATIF Journal of ICT Research and Applications Teknika: Jurnal Sains dan Teknologi Jurnal Informatika dan Teknik Elektro Terapan Scientific Journal of Informatics JAIS (Journal of Applied Intelligent System) Proceeding SENDI_U Jurnal Ilmiah Dinamika Rekayasa (DINAREK) Proceeding of the Electrical Engineering Computer Science and Informatics Jurnal Teknologi dan Sistem Komputer Sinkron : Jurnal dan Penelitian Teknik Informatika SISFOTENIKA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control InComTech: Jurnal Telekomunikasi dan Komputer Jurnal Eksplora Informatika JOURNAL OF APPLIED INFORMATICS AND COMPUTING MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer English Language and Literature International Conference (ELLiC) Proceedings Infotekmesin Jurnal Mnemonic Abdimasku : Jurnal Pengabdian Masyarakat SKANIKA: Sistem Komputer dan Teknik Informatika Jurnal Teknik Informatika (JUTIF) Jurnal Program Kemitraan dan Pengabdian Kepada Masyarakat Journal of Soft Computing Exploration Advance Sustainable Science, Engineering and Technology (ASSET) Prosiding Seminar Nasional Hasil-hasil Penelitian dan Pengabdian Pada Masyarakat Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Seminar Nasional Teknologi dan Multidisiplin Ilmu Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Scientific Journal of Informatics LogicLink: Journal of Artificial Intelligence and Multimedia in Informatics Seminar Nasional Riset dan Teknologi (SEMNAS RISTEK) Advance Sustainable Science, Engineering and Technology (ASSET) INOVTEK Polbeng - Seri Informatika
Claim Missing Document
Check
Articles

ALGORITMA COUNTING SORT VS ALGORITMA PENGURUTAN MODERN: ANALISIS EFISIENSI MEMORI DAN WAKTU KOMPUTASI Pujiono, Imam Prayogo; Kamal, Muhammad Rikzam; Prayogi, Arditya; Sari, Christy Atika; Ikhsanuddin, Rohmatulloh Muhamad
Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 3 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i3.6657

Abstract

Penelitian ini bertujuan untuk menganalisis efisiensi memori dan waktu komputasi algoritma Counting Sort dibandingkan dengan algoritma pengurutan modern seperti Heap Sort, Quick Sort, Merge Sort, dan Shell Sort. Fokus penelitian adalah pada dataset numerik acak dengan rentang terbatas, yang relevan untuk aplikasi praktis di bidang informatika. Penelitian ini menggunakan pendekatan eksperimental, dengan dataset berukuran 100, 1.000, dan 10.000 elemen yang dihasilkan dalam rentang 1 hingga 99, dan diimplementasikan dalam bahasa pemrograman Java untuk pengujian performa. Berdasarkan hasil eksperimen, Counting Sort mencatat waktu komputasi yang jauh lebih rendah, terutama pada dataset besar (10.000 elemen), di mana performanya hampir 6-10 kali lebih cepat dibandingkan algoritma lainnya. Namun, dalam hal efisiensi memori, Counting Sort memerlukan penggunaan memori yang lebih tinggi pada dataset kecil (100 elemen) dan sedang (1.000 elemen) dibandingkan algoritma in-place seperti Heap Sort dan Quick Sort. Pada dataset besar, penggunaan memorinya tetap kompetitif, bahkan lebih hemat dibandingkan Merge Sort. Penelitian ini menyimpulkan bahwa Counting Sort merupakan pilihan optimal untuk mengurutkan dataset numerik dengan rentang terbatas, terutama dalam aplikasi yang menuntut pengolahan data cepat dan hemat sumber daya, seperti sistem tertanam atau IoT. Temuan ini memberikan kontribusi pada pemilihan algoritma pengurutan yang lebih tepat berdasarkan karakteristik dataset.
Monk Skin Tone Classification: RMSprop vs Adam Optimizer in MobileNetV2 Aryaputra, Firman Naufal; Sari, Christy Atika; Rachmawanto, Eko Hari
Jurnal Informatika: Jurnal Pengembangan IT Vol 10, No 3 (2025)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v10i3.8886

Abstract

The lack of accurate and accessible skin tone classification systems poses significant challenges in personalized fashion recommendations and inclusive technology development. This study aims to develop a skin tone classification system utilizing the Monk Skin Tone (MST) scale through the implementation of Convolutional Neural Network with MobileNetV2 architecture enhanced by transfer learning techniques. The MST scale encompasses ten distinct categories providing comprehensive representation of human skin color diversity. The methodology leverages efficient MobileNetV2 architecture suitable for web deployment, transfer learning to enhance accuracy despite limited training data, and strategic dataset balancing. A dataset of 1,729 facial photographs representing the complete MST spectrum was utilized. Preprocessing involved scaling images to 224×224 pixels, normalization, and augmentation through various transformations to address class imbalance challenges. The dataset was partitioned using a 70:15:15 ratio for training, validation, and testing respectively. The system was implemented as a web platform called SkinToneAI that enables users to upload facial images for skin tone analysis and receive personalized clothing color recommendations. Evaluation demonstrated classification accuracy of 97.83% on the test dataset with a loss value of 0.1166 when using Adam optimizer, while RMSprop optimizer achieved better performance with 98.26% accuracy and 0.0548 loss value. The implemented web application successfully translates technical capabilities into practical fashion assistance. The system provides users with customized apparel color suggestions based on their identified skin tone category, effectively connecting advanced AI technology with everyday fashion needs.
Regionprops Segmentation in Convolutional Neural Network for Identification of Lung Cancer Disease and Position Syafira, Zahra Ghina; Sari, Christy Atika; Mulyono, Ibnu Utomo Wahyu; Agustina, Feri; Suprayogi, Suprayogi; Doheir, Mohamed
Jurnal Masyarakat Informatika Vol 16, No 2 (2025): Issue in Progress
Publisher : Department of Informatics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jmasif.16.2.73967

Abstract

Lung cancer is one of the leading causes of death in the world, so early detection is very important to increase the chances of patient recovery. This study aims to develop a method for identifying lung cancer types using Convolutional Neural Network (CNN) combined with Regionprops segmentation technique to determine the position of cancer in CT scan images. The dataset used consists of 1,294 CT scan images classified into three classes, namely Benign, Malignant, and Normal, with variations in the ratio of training and testing data: 80:20, 70:30, 60:40, 50:50, and 40:60. The CNN method is used to perform classification, while the Regionprops segmentation technique is applied to determine the position of the cancer. The results showed that the model with a data ratio of 80:20 achieved the highest accuracy of 99.54%, indicating a very good generalization ability of the model. The Regionprops segmentation technique successfully separated the nodule area in the CT scan image clearly, thus providing more detailed information regarding the position of the cancer. The conclusion of this study shows that the combination of CNN and Regionprops segmentation methods is effective in detecting and analyzing lung cancer and has the potential to be used as a diagnostic tool in the medical field. This study recommends further testing with a larger dataset and optimization of model parameters to improve classification and segmentation performance.
Lung Segmentation in X-ray Images of Tuberculosis Patients Using U-Net with CLAHE Preprocessing Mabina, Ibnu Farid; Sari, Christy Atika; Rachmawanto, Eko Hari
Journal of Applied Informatics and Computing Vol. 9 No. 4 (2025): August 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i4.9869

Abstract

Tuberculosis (TB) is an infectious disease that commonly affects the lungs and remains one of the leading causes of death from infectious diseases. Early detection is essential to prevent further spread and organ damage. Chest X-ray images are one of the main methods for diagnosing TB, but image quality is often affected by low contrast and noise. This study proposes the application of Contrast Limited Adaptive Histogram Equalization (CLAHE) method to improve X-ray image quality, combined with U-Net deep learning architecture for lung segmentation in X-ray images of tuberculosis patients. U-Net was chosen due to its excellent capability in medical image segmentation, thanks to its architectural structure that has encoder-decoder with skip connections, which allows the model to retain detailed information on high-resolution images, even on complex and noisy data. Experimental results using the Shenzhen and Montgomery datasets show that the U-Net model with CLAHE achieves Pixel Accuracy 97.96%, Recall 94.93%, Specificity 98.97%, Dice Coefficient 95.87%, and Jaccard Index (IoU) 92.07%.
A Banana Disease Detection Using MobileNetV2 Model Based on Adam Optimizer Aryanta, Muhammad Syifa; Sari, Christy Atika; Rachmawanto, Eko Hari
Journal of Applied Informatics and Computing Vol. 9 No. 4 (2025): August 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i4.9870

Abstract

The main objective of this study is to develop a deep learning-based disease detection system for banana plants using the MobileNetV2 architecture through a comprehensive comparison with VGG16. This study utilizes a dataset of 3,653 images categorized into 12 classes, including Aphids, Bacterial Soft Rot, Bract Mosaic Virus, Cordana, Insect Pest, Moko, Panama, Fusarium Wilt, Black Sigatoka, Yellow Sigatoka, Pestalotiopsis, and healthy specimens. The methodological framework includes architecture comparison, data balancing, preprocessing techniques, and performance evaluation. The dataset was divided with a distribution ratio of 75% for training, 15% for validation, and 10% for testing. Comparative analysis shows excellent performance of MobileNetV2 with an accuracy of 96.21% compared to 90.15% for VGG16, while maintaining a significantly smaller model size of 10.0 MB compared to 57.8 MB for VGG16. Statistical validation through the McNemar test confirms significant superiority with a p-value of 0.008. The findings of this study contribute positively to the development of agricultural technology, particularly in the development of automated systems for disease detection in banana plants.
Real-Time Braille Letter Detection System Using YOLOv8 Himawan, Reyshano Adhyarta; Rachmawanto, Eko Hari; Sari, Christy Atika
Journal of Applied Informatics and Computing Vol. 9 No. 4 (2025): August 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i4.10060

Abstract

The purpose of this research is to create a system capable of detecting and recognizing Braille letters in real-time using the YOLOv8 algorithm for object detection, integrated with image processing technology and a user interface based on Tkinter. This system is developed to support visually impaired individuals in reading Braille text through the use of a webcam that captures and identifies Braille letters from images. The identification process is carried out by comparing the obtained images with a precompiled database of Braille letters. This research utilizes a dataset consisting of images of Braille code from letters A to Z, collected through public and private methods, with a total of 6013 images that comprehensively represent Braille letters. The model training is done using YOLOv8 to recognize Braille letter objects, with model performance evaluation using the Mean Average Precision (mAP) metric.The results of the tests show a very satisfactory model performance, with a mAP50 score of 0.98 and a mAP50-95 score of 0.789, as well as a high accuracy rate for almost all Braille letters tested. In addition, the system is equipped with a Tkinter-based graphical user interface (GUI) that allows users to operate the Braille letter detection process interactively and easily. This research proves that the YOLOv8-based object detection approach has significant potential for Braille letter recognition applications, which is expected to enhance accessibility and the independence of visually impaired individuals in reading text effectively.
A Comparison of MobileNetV2 and VGG16 Architectures with Transfer Learning for Multi-Class Image-Based Waste Classification Kumala, Raffa Adhi; Sari, Christy Atika; Rachmawanto, Eko Hari
Journal of Applied Informatics and Computing Vol. 9 No. 4 (2025): August 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i4.9958

Abstract

Effective waste management represents a global challenge with significant environmental and public health impacts. Despite existing waste classification systems achieving high accuracy rates, a critical research gap exists in determining optimal CNN architectures for real-world deployment constraints, particularly regarding computational efficiency versus classification accuracy trade-offs. We compared two Convolutional Neural Network (CNN) architectures MobileNetV2 and VGG16 for classifying ten types of waste using image-based analysis. Using transfer learning approach, both models were modified for waste classification tasks by adding custom layers to pre-trained models. The dataset contained 19,762 images balanced to 9,440 samples through under-sampling techniques and enhanced with data augmentation to increase variation. Results demonstrated that MobileNetV2 achieved 95.6% test accuracy with precision 0.93, recall 0.93, and F1-score 0.93, significantly outperforming VGG16's 89.13% accuracy with precision 0.91, recall 0.90, and F1-score 0.90. Beyond superior accuracy, MobileNetV2 also demonstrated higher computational efficiency with 350ms/step training time compared to VGG16's 700ms/step, and more consistent performance across all waste categories.
Optimized Visualization of Digital Image Steganography using Least Significant Bits and AES for Secret Key Encryption Jatmoko, Cahaya; Sinaga, Daurat; Lestiawan, Heru; Astuti, Erna Zuni; Sari, Christy Atika; Shidik, Guruh Fajar; Andono, Pulung Nurtantio; Yaacob, Noorayisahbe Mohd
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 10, No. 3, August 2025
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v10i3.2252

Abstract

Data hiding is a technique used to embed secret information into a cover medium, such as an image, audio, or video, with minimal distortion, ensuring that the hidden data remains imperceptible to an observer. The key challenge lies in embedding secret information securely while maintaining the original quality of the host medium. In image-based data hiding, this often means ensuring the hidden data cannot be easily detected or extracted while still preserving the visual integrity of the host image. To overcome this, we propose a combination of AES (Advanced Encryption Standard) encryption and Least Significant Bit (LSB) steganography. AES encryption is used to protect the secret images, while the LSB technique is applied to embed the encrypted images into the host images, ensuring secure data transfer. The dataset includes grayscale 256x256 images, specifically "aerial.jpg," "airplane.jpg," and "boat.jpg" as host images, and "Secret1," "Secret2," and "Secret3" as the encrypted secret images. Evaluation metrics such as Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Unified Average Changing Intensity (UACI), and Number of Pixels Changed Rate (NPCR) were used to assess both the image quality and security of the stego images. The results showed low MSE (0.0012 to 0.0013), high PSNR (58 dB), and consistent UACI and NPCR values, confirming both the preservation of image quality and the effectiveness of encryption for securing the secret data.
Multi-Level Secure Image Cryptosystem Using Logistic Map Chaos: Entropy, Correlation, and 3D Histogram Validation Latifa, Anidya Nur; Sari, Christy Atika; Rachmawanto, Eko Hari; Sarker, Md Kamruzzaman
Jurnal Masyarakat Informatika Vol 16, No 2 (2025): Issue in Progress
Publisher : Department of Informatics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jmasif.16.2.74537

Abstract

This study presents a multi-level image encryption framework that combines password dependent SHA-256 key generation with a Logistic Map-based chaotic mechanism, supporting three operational modes: Speed, Balanced, and Security. The system is designed for scalability and robustness across diverse image sizes, achieving up to 27 percent faster encryption than AES on 1024×1024 images while maintaining high cryptographic strength. Experimental results show strong randomness with entropy reaching up to 7.98 bits per pixel, reduced adjacent pixel correlation below 0.01, and high resistance to differential attacks with NPCR above 99.6 percent and UACI around 33.4 percent. Structural integrity after decryption is also preserved with SSIM scores above 0.98. Compared to existing chaos based methods such as those proposed by Arif et al. and Riaz et al., the proposed system offers superior entropy performance, enhanced flexibility through multi-mode encryption, and broader resolution support up to 2048×2048 pixels. Comprehensive evaluations using entropy, correlation, PSNR, SSIM, XOR, and 3D histogram analysis confirm the method’s effectiveness. These findings highlight the system’s suitability for real-time, secure image transmission in environments such as IoT, medical imaging, and embedded applications.
KOMBINASI DCT DAN BEAUFORT CHIPER UNTUK PENINGKATAN KEAMANAN HAK CIPTA CITRA DIGITAL Setiadi, De Rosal Ignatius Moses; Jatmoko, Cahaya; Rachmawanto, Eko Hari; Sari, Christy Atika
JST (Jurnal Sains dan Teknologi) Vol. 7 No. 2 (2018)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/jstundiksha.v7i2.13795

Abstract

Informasi penting seperti hak cipta tentunya perlu diamankan, terlebih saat era digital saat ini yang semakin canggih. Pengamanan informasi dapat dilakukan dengan teknik kriptografi atau penyandian. Sedangkan untuk pengamanan hak cipta dapat dilakukan dengan teknik watermarking. Penelitian ini mengkombinasi teknik kriptografi dan watermarking. Sebelum watermark disisipkan watermark disandikan terlebih dahulu. Metode watermarking yang diusulkan adalah DCT dan metode kriptografi yang diusulkan adalah Beaufort cipher. DCT dipilih karena merupakan transformasi domain yang tahan terhadap macam-macam manipulasi, cukup ringan dalam kalkulasi dan menghasilkan watermarking yang impercept. Sedangkan Beaufort cipher merupakan algoritma yang sederhana tapi sangat aman untuk pengamanan data. Alat ukur yang digunakan  dalam eksperimen adalah SSIM, CC dan analisis histogram. Berdasarkan pengukuran terhadap hasil eksperimen dari metode yang diusulkan didapatkan hasil watermarking yang tahan terhadap serangan, impercept, dan aman.
Co-Authors AA Sudharmawan, AA Abdussalam Abdussalam Abdussalam Abdussalam, Abdussalam Abiyyi, Ryandhika Bintang Agustina, Feri Ahmad Salafuddin Ajib Susanto Akbar, Fadhilah Aditya Akbar, Ilham Januar Alfany, Fauzan Maulana Ali, Rabei Raad Alifia Salwa Salsabila Alvian Ideastari, Nukat Alvin Faiz Kurniawan Anak Agung Gede Sugianthara Andi Danang Krismawan Anggraeny, Tiara Annisa Sulistyaningsih Anny Yuniarti Antonius Erick Handoyo Ardy, Rizky Damara Ardyani, Salma Shafira Fatya Arfian, Aldi Azmi Ariska, Ratih Aryanta, Muhammad Syifa Aryaputra, Firman Naufal Astuti, Yani Parti Auni, Amelia Gizzela Sheehan Azzahra, Fidela Bambang Sugiarto Briliantino Abhista Prabandanu Budi Harjo Cahaya Jatmoko Cahyo, Nur Ryan Dwi Candra Irawan Candra Irawan Chaerul Umam Chaerul Umam Cinantya Paramita D.R.I.M. Setiadi Danang Krismawan, Andi Danang Wahyu Utomo Danar Bayu Adi Saputra Danu Hartanto Daurat Sinaga Daurat Sinaga De Rosal Ignatius Moses Setiadi Desi Purwanti Kusumaningrum Desi Purwanti Kusumaningrum Desi Purwanti Kusumaningrum Didik Hermanto Doheir, Mohamed Doheir, Mohamed Doheir, Mohamed A S Dwi Puji Prabowo Edi Faisal Egia Rosi Subhiyakto Egia Rosi Subhiyakto Eko Hari Rachmanto Eko Hari Rachmawanto Eko Septyasari Elkaf Rahmawan Pramudya Ericsson Dhimas Niagara Erika Devi Udayanti Erlin Dolphina Erna Daniati Erna Zuni Astuti Ery Mintorini Etika Kartikadarma Farrel Athaillah Putra Fidela Azzahra Florentina Esti Nilawati Florentina Esti Nilawati Florentina Esti Nilawati Folasade Olubusola Isinkaye Folasade Olubusola Isinkaye Giovani Ardiansyah Gumelar, Rizky Syah Guruh Fajar Shidik Gusta, Muhammad Bima Hadi, Heru Pramono Haqikal, Hafidz Hartono, Matthew Raymond Haryanto, Christanto Antonius Haryanto, Christanto Antonius Hasbi, Hanif Maulana Hayu Wikan Kinasih Heru Lestiawan Heru Lestiawan Himawan, Reyshano Adhyarta Hyperastuty, Agoes Santika Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ifan Rizqa Ihya Ulumuddin, Dimas Irawan Ikhsanuddin, Rohmatulloh Muhamad Imam Prayogo Pujiono Inzaghi, Reza Bayu Ahmad Isinkaye, Folasade Olubusola Islam, Hussain Md Mehedul Istiqomah, Annisa Ayu Ivan Stepheng Kamila, Izza Putri Kas Raygaputra Ilaga Krismawan, Andi Danang Kumala, Raffa Adhi Kurniawan, Nicholas Alfandhy Kusuma, Edi Jaya Kusuma, Mohammad Roni Kusumawati, Yupie L. Budi Handoko Laksana, Deddy Award Widya Lalang Erawan Latifa, Anidya Nur Liya Umaroh Liya Umaroh, Liya Lucky Arif Rahman Hakim Mabina, Ibnu Farid Maulana Malik Ibrahim Al-Ghiffary Md Kamruzzaman Sarker Md Kamruzzaman Sarker Meitantya, Mutiara Dolla Mohamed Doheir Mohammad Rizal, Mohammad Mohd Yaacob, Noorayisahbe Muchamad Akbar Nurul Adzan Muhammad Rikzam Kamal Mulyono, Ibnu Utomo Wahyu Mulyono, Ibnu Utomo Wahyu Munis Zulhusni Musfiqur Rahman Sazal Muslih Muslih Nabila, Qotrunnada Neni Kurniawati Ningrum, Amanda Prawita Nisa, Yuha Aulia Noor Ageng Setiyanto Noor Ageng Setiyanto, Noor Ageng Noorayisahbe Mohd Yacoob Nova Rijati Nugroho, Widhi Bagus Nur Ryan Dwi Cahyo Oktaridha, Harwinanda Oktayaessofa, Eqania Ozagastra Caluella Prambudi Parti Astuti, Yani Parti Astuti, Yani parti astuti, yani Parti Astuti1, Yani Parti Astuti1, Yani Permana langgeng wicaksono ellwid putra Pradana, Luthfiyana Hamidah Sherly Pradana, Rizky Putra Pradnyatama, Mehta Praskatama, Vincentius Pratama, Zudha Pratiwi, Saniya Rahma Prayogi, Arditya Pulung Nurtantio Andono Purwanto Purwanto Puspa, Silfi Andriana Putri Mega Arum Wijayanti Rabei Raad Ali Rahmalan, Hidayah Raisul Umah Nur Ramadhan Rakhmat Sani Ratih Ariska Robert Setyawan Sabilillah, Ferris Tita Saifullah, Zidan Salma Shafira Fatya Ardyani Salsabila, Alifia Salwa Sania, Wulida Rizki Santoso, Bagus Raffi Saputra, Danar Bayu Adi Sari, Wellia Shinta Sari Shinta Sarker, Md Kamruzzaman Sarker, Md. Kamruzzaman Setiarso, Ichwan Setiawan, Fachruddin Ari Shelomita, Viki Ari Sinaga, Daurat Sinaga, Daurat Sinaga, Daurat Sofyan, Ega Adiasa Solichul Huda, Solichul Sudibyo, Usman Sudibyo, Usman Sudibyo, Usman Sugianto, Castaka Agus Sumarni Adi, Sumarni Suprayogi Suprayogi Suprayogi Suprayogi Sutrisno, Hendra Syabilla, Mutiara Syafira, Zahra Ghina Tan Samuel Permana Tan Samuel Permana Tiara Anggraeny Titien Suhartini Sukamto Umah Nur, Raisul Umaroh, Liya Umaroh, Liya Utomo, Danang Wahyu Velarati, Khoirizqi Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Wintaka, Aristides Bima Yaacob, Noorayisahbe Mohd Yani Parti Astuti Yupie Kusumawati Zaenal Arifin Zulhusni, Munis