p-Index From 2021 - 2026
12.91
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Dinamik Jurnal Ilmu Komputer dan Informasi Jurnal Masyarakat Informatika Jurnal Sains dan Teknologi Semantik Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics Prosiding Seminar Nasional Sains Dan Teknologi Fakultas Teknik JUTI: Jurnal Ilmiah Teknologi Informasi Prosiding SNATIF Journal of ICT Research and Applications Teknika: Jurnal Sains dan Teknologi Jurnal Informatika dan Teknik Elektro Terapan Scientific Journal of Informatics JAIS (Journal of Applied Intelligent System) Proceeding SENDI_U Jurnal Ilmiah Dinamika Rekayasa (DINAREK) Proceeding of the Electrical Engineering Computer Science and Informatics Jurnal Teknologi dan Sistem Komputer Sinkron : Jurnal dan Penelitian Teknik Informatika SISFOTENIKA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control InComTech: Jurnal Telekomunikasi dan Komputer Jurnal Eksplora Informatika JOURNAL OF APPLIED INFORMATICS AND COMPUTING MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer English Language and Literature International Conference (ELLiC) Proceedings Infotekmesin Jurnal Mnemonic Abdimasku : Jurnal Pengabdian Masyarakat SKANIKA: Sistem Komputer dan Teknik Informatika Jurnal Teknik Informatika (JUTIF) Jurnal Program Kemitraan dan Pengabdian Kepada Masyarakat Journal of Soft Computing Exploration Advance Sustainable Science, Engineering and Technology (ASSET) Prosiding Seminar Nasional Hasil-hasil Penelitian dan Pengabdian Pada Masyarakat Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Seminar Nasional Teknologi dan Multidisiplin Ilmu Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Scientific Journal of Informatics LogicLink: Journal of Artificial Intelligence and Multimedia in Informatics Seminar Nasional Riset dan Teknologi (SEMNAS RISTEK) Advance Sustainable Science, Engineering and Technology (ASSET) INOVTEK Polbeng - Seri Informatika
Claim Missing Document
Check
Articles

Quality Improvement for Invisible Watermarking using Singular Value Decomposition and Discrete Cosine Transform Utomo, Danang Wahyu; Sari, Christy Atika; Isinkaye, Folasade Olubusola
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 23 No. 3 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i3.3744

Abstract

Image watermarking is a sophisticated method often used to assert ownership and ensure the integrity of digital images. This research aimed to propose and evaluate an advanced watermarking technique that utilizes a combination of singular value decomposition methodology and discrete cosine transformation to embed the Dian Nuswantoro University symbol as proof of ownership into digital images. Specific goals included optimizing the embedding process to ensure high fidelity of the embedded watermark and evaluating the fuzziness of the watermark to maintain the visual quality of the watermarked image. The methods used in this research were singular value decomposition and discrete cosine transformation, which are implemented because of their complementary strengths. Singular value decomposition offers robustness and stability, while discrete cosine transformation provides efficient frequency domain transformation, thereby increasing the overall effectiveness of the watermarking process. The results of this study showed the efficacy of the Lena image technique in gray scale having a mean square error of 0.0001, a high peak signal-to-noise ratio of 89.13 decibels (dB), a universal quality index of 0.9945, and a similarity index structural of 0.999. These findings confirmed that the proposed approach maintains image quality while providing watermarking resistance. In conclusion, this research contributed a new watermarking technique designed to verify institutional ownership in digital images, specifically benefiting Dian Nuswantoro University. It showed significant potential for wider application in digital rights management.
KLASIFIKASI TERUMBU KARANG MENGGUNAKAN CNN MOBILENET Hadi, Heru Pramono; Rachmawanto, Eko Hari; Sari, Christy Atika
Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi) Vol 8, No 01 (2024): SEMNAS RISTEK 2024
Publisher : Universitas Indraprasta PGRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/semnasristek.v8i01.7177

Abstract

Terumbu karang merupakan bagian dari ekosistem laut yang indah, namun dibalik keindahan tersebut, terumbu karang juga rentan akan kerusakan ekosistem yang terjadi, yang dimana dapat disebabkan oleh terumbu karang rentan mengalami pemutihan oleh aktivitas yang terjadi di sekitar ekosistem terumbu karang tersebut. Oleh karena itu, diperlukan proses klasifikasi atau pemilahan antara terumbu karang yang terkena pemutihan, sehat ataupun mati sehingga dapat diambil suatu tindakan konservatif yang tidak merusak ekosistem terumbu karang tersebut. Pada penelitian ini, akan dilakukan proses klasifikasi terumbu karang dengan menggunakan metode transfer learning Convolutional Neural Network yaitu dengan arsitektur MobileNet. Dalam proses penelitian ini, akan menggunakan dataset yang berjumlah total 1582 data citra terumbu karang yang memiliki 3 kelas utama dengan sebaran data yaitu 720 data bleached, 150 data dead dan 712 data healthy. Hasil yang didapatkan setelah dilakukannya proses pengujian pada penelitian ini yaitu arsitektur MobileNet mendapatkan akurasi pengujian yaitu sebesar 88%.
OPTIMASI INVISIBLE WATERMARKING METODE DCT BERBASIS SVD PADA CITRA BERWARNA Utomo, Danang Wahyu; Sari, Christy Atika; Rachmawanto, Eko Hari
Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi) Vol 8, No 01 (2024): SEMNAS RISTEK 2024
Publisher : Universitas Indraprasta PGRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/semnasristek.v8i01.7140

Abstract

Studi ini mengevaluasi efektivitas metode watermarking dalam menyembunyikan informasi rahasia pada citra digital menggunakan Discrete Cosine Transform (DCT) dan Singular Value Decomposition (SVD). Pendekatan ini penting untuk menjaga keamanan dan hak cipta dalam era digital. Penggunaan DCT memungkinkan penyematan watermark tanpa mengorbankan kualitas visual citra. Hasil evaluasi menggunakan Mean Squared Error (MSE) menunjukkan bahwa citra Lena.bmp mencapai nilai MSE terendah pada Level 1 dengan 0.075, sementara Peppers.png memiliki nilai MSE terendah pada Level 1 dengan 0.0083, dan Baboon.jpg pada Level 1 dengan 0.0097. Pada sisi lain, hasil evaluasi menggunakan Peak Signal-to-Noise Ratio (PSNR) menunjukkan bahwa nilai PSNR tertinggi tercatat pada Level 1 untuk ketiga citra dengan nilai 48.17 dB. Temuan ini menunjukkan bahwa metode watermarking yang diterapkan menggunakan DCT dan SVD berhasil dalam menyematkan informasi rahasia pada citra digital dengan tingkat preservasi kualitas yang tinggi.
OTOMATISASI SISTEM KONTROL TUMBUH KEMBANG TOGA (TANAMAN OBAT KELUARGA) BERBASIS FUZZY C-MEANS Sari, Christy Atika; Sari, Wellia Shinta; Rachmawanto, Eko Hari
Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi) Vol 8, No 01 (2024): SEMNAS RISTEK 2024
Publisher : Universitas Indraprasta PGRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/semnasristek.v8i01.7127

Abstract

Tanaman TOGA adalah tanaman obat keluarga yang memiliki peran penting dalam pengobatan tradisional. Dalam beberapa tahun terakhir, terjadi permasalahan serius terkait dengan pertumbuhan dan pemeliharaan tanaman TOGA, yang disebabkan oleh perubahan iklim, urbanisasi, dan kurangnya pengetahuan dalam budidaya tanaman ini. Untuk mengatasi tantangan ini, penelitian mengenai pengembangan Prototype Hidroponik Cerdas dilakukan. Prototype ini mengadopsi teknologi canggih yang memungkinkan pemantauan dan pengendalian otomatis terhadap semua aspek yang memengaruhi pertumbuhan tanaman, termasuk suhu, kelembaban udara, intensitas cahaya, pH larutan nutrisi, dan kadar oksigen dalam air. Dengan demikian, sistem ini mampu meningkatkan konsistensi, kecepatan pertumbuhan, dan kualitas tanaman TOGA, yang pada gilirannya mendukung ketersediaan sumber daya TOGA yang berkualitas tinggi bagi masyarakat serta berkontribusi pada pelestarian lingkungan yang lebih baik secara keseluruhan.
PERFORMA CONVOLUTIONAL NEURAL NETWORK DALAM DEEP LAYERS RESNET-50 UNTUK KLASIFIKASI MRI TUMOR OTAK Rachmawanto, Eko Hari; Hermanto, Didik; Pratama, Zudha; Sari, Christy Atika
Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi) Vol 8, No 01 (2024): SEMNAS RISTEK 2024
Publisher : Universitas Indraprasta PGRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/semnasristek.v8i01.7125

Abstract

Tumor otak merupakan penyakit yang sangat kompleks dan beragam, dengan dampak yang serius pada kesehatan manusia. Berdasarkan data dari International Agency for Research on Cancer (IARC), variasi kondisi kesehatan penderita tumor otak disebabkan oleh faktor-faktor seperti ukuran, jenis, lokasi, dan tingkat keparahan tumor. Penelitian ini bertujuan untuk memberikan kontribusi signifikan dalam pemahaman dan deteksi dini tumor otak, dengan harapan dapat meningkatkan prognosis dan pengelolaan penyakit yang mengancam nyawa ini. Menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur ResNet-50, penelitian ini mengembangkan model klasifikasi berdasarkan citra MRI tumor otak. Hasil evaluasi menunjukkan keberhasilan model dengan akurasi rata-rata mencapai 98.82%, memungkinkan identifikasi jenis tumor otak, seperti tumor jinak, meningioma, dan pituitary, dengan tingkat presisi dan recall mencapai 99.22% dan 100% secara berturut-turut. Penelitian ini memberikan harapan baru dalam diagnosis dini, memperkuat penanganan penyakit tumor otak, dan memberikan landasan bagi pengembangan solusi medis yang lebih efektif, membawa dampak positif pada pasien yang mengidap penyakit ini.
The AirNav Semarang Employee Presence System Using Face Recognition Based on Haar Cascade Azzahra, Fidela; Sari, Christy Atika; Rachmawanto, Eko Hari
Advance Sustainable Science Engineering and Technology Vol. 6 No. 3 (2024): May - July
Publisher : Science and Technology Research Centre Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v6i3.672

Abstract

The presence of employees is a key factor in supporting the needs of the workplace. At present, the employee presence system at PT. AirNav Indonesia Semarang Branch still uses fingerprint and RFID-based employee ID cards for authentication. This RFID-based system can increase employee fraud by allowing employees to misuse each other's ID cards. To avoid such fraud, a system needs to be built and it will be using face recognition technology as the primary authentication method, with the Haar Cascade Algorithm. This algorithm has the advantage of being computationally fast, as it only relies on the number of pixels within a rectangle, not every pixel of an image. In addition to fast computation, this algorithm also has the advantage of identifying objects that are relatively far away. With the implementation of the Haar Cascade algorithm, the results indicate the capability of face recognition in detecting the faces of registered employees within the system based on facial angles with an accuracy rate of 60%, expressions with an accuracy rate of 100%, as well as obstructive parameters such as glasses and masks with an accuracy rate of 33.33%. The ability to detect objects from various camera angles, recognize faces with different expressions, and identify objects obstructed by parameters can serve as reasons why this algorithm needs to be implemented
Implementation of DenseNet121 Architecture for Waste Type Classification Zulhusni, Munis; Sari, Christy Atika; Rachmawanto, Eko Hari
Advance Sustainable Science Engineering and Technology Vol. 6 No. 3 (2024): May - July
Publisher : Science and Technology Research Centre Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v6i3.673

Abstract

The growing waste management problem in many parts of the world requires innovative solutions to ensure efficiency in sorting and recycling. One of the main challenges is accurate waste classification, which is often hampered by the variability in visual characteristics between waste types. As a solution, this research develops an image-based litter classification model using Deep Learning DenseNet architecture. The model is designed to address the need for automated waste sorting by classifying waste into ten different categories, using diverse training datasets. The results of this study showed that the model achieved an overall accuracy rate of 93%, with an excellent ability to identify and classify specific materials such as batteries, biological materials, and brown glass. Despite some challenges in metal and plastic classification, these results confirm the great potential of using Deep Learning technology in waste management systems to improve sorting processes and increase recycling efficiency
Classification of Movie Recommendation on Netflix Using Random Forest Algorithm Salsabila, Alifia Salwa; Sari, Christy Atika; Rachmawanto, Eko Hari
Advance Sustainable Science Engineering and Technology Vol. 6 No. 3 (2024): May - July
Publisher : Science and Technology Research Centre Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v6i3.676

Abstract

Netflix is one of the most popular streaming platforms in this world. So many movies and shows with various genres and production countries are available on this platform. Netflix has their own recommendation systems for the subscribers according to their data and algorithm. This research aims to compare two methods of data classifications using Decision Tree and Random Forest algorithm and make a recommendation system based on Netflix dataset. This paper use feature importance to selecting relevant feature and how n_estimators affect the classification. In this research, Random Forest with 50 trees estimator with 96.84% accuracy before feature selection and 96.92% accuracy after feature selection has the best accuracy compared to the Decision Tree classification. Besides, Decision Tree has only 95.64% accuracy before feature selection and increases to 96.07% accuracy after feature selection. Trees estimator also affect the accuracy of Random Forest classification. After comparing the results, Random Forest with 50 trees estimators using feature selection provides best accuracy and it will be used to predict some similar movies and shows recommendation
High-Quality Evaluation for Invisible Watermarking Based on Discrete Cosine Transform (DCT) and Singular Value Decomposition (SVD) Sofyan, Ega Adiasa; Sari, Christy Atika; Rachmawanto, Eko Hari; Cahyo, Nur Ryan Dwi
Advance Sustainable Science, Engineering and Technology Vol 6, No 1 (2024): November-January
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v6i1.17186

Abstract

In this research, we propose an innovative approach that integrates Discrete Cosine Transform (DCT) and Singular Value Decomposition (SVD) to enhance the quality and security of digital images. The purpose of this technique is to embed imperceptible watermarks into images, preserving their integrity and authenticity. The integration of DCT allows for an efficient transformation of image data into frequency components, forming the basis for embedding watermarks that are nearly invisible to the human eye. In this context, SVD offers an advantage by separating singular values and corresponding vectors, facilitating a more sophisticated watermarking process. The quality evaluation using metrics such as MSE, PSNR, UQI, and MSSIM demonstrates the effectiveness of this approach. Low average MSE values, ranging from 0.0058 to 0.0064, indicate minimal distortion in the watermarked images. Additionally, high PSNR values, ranging from 67.20 dB to 67.22 dB, affirm the high image quality achieved after watermarking. These results validate that the integration of DCT and SVD provides a high level of security while maintaining optimal visual quality in digital images. This approach is highly relevant and effective in addressing the challenges of image protection in this digital era.
A Good Evaluation Based on Confusion Matrix for Lung Diseases Classification using Convolutional Neural Networks Kamila, Izza Putri; Sari, Christy Atika; Rachmawanto, Eko Hari; Cahyo, Nur Ryan Dwi
Advance Sustainable Science, Engineering and Technology Vol 6, No 1 (2024): November-January
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/asset.v6i1.17330

Abstract

CNN has been widely used to detect a pattern with image classification. This study used CNN to perform a classification analysis of lung abnormality detection on chest X-ray images. The dataset consists of 5,732 2D images with dimensions of 200 x 200 x 1 divided into training data (85%) and testing data (15%). The preprocessing process includes image resizing, enhancement to increase contrast and reduce image complexity, and filtering to improve visibility and reduce noise. CNN is used to classify imagery into three categories, Normal (no abnormalities), Pneumonia, and Tuberculosis. The results showed a good level of accuracy, with an average accuracy of 97.24% in 3 trainings, and a 100% success rate in 6 classification experiments. This research provides insights into the detection of lung disorders and encourages further exploration in medical diagnosis.
Co-Authors AA Sudharmawan, AA Abdussalam Abdussalam Abdussalam Abdussalam, Abdussalam Abiyyi, Ryandhika Bintang Agustina, Feri Ahmad Salafuddin Ajib Susanto Akbar, Fadhilah Aditya Akbar, Ilham Januar Alfany, Fauzan Maulana Ali, Rabei Raad Alifia Salwa Salsabila Alvian Ideastari, Nukat Alvin Faiz Kurniawan Anak Agung Gede Sugianthara Andi Danang Krismawan Anggraeny, Tiara Annisa Sulistyaningsih Anny Yuniarti Antonius Erick Handoyo Ardy, Rizky Damara Ardyani, Salma Shafira Fatya Arfian, Aldi Azmi Ariska, Ratih Aryanta, Muhammad Syifa Aryaputra, Firman Naufal Astuti, Yani Parti Auni, Amelia Gizzela Sheehan Azzahra, Fidela Bambang Sugiarto Briliantino Abhista Prabandanu Budi Harjo Cahaya Jatmoko Cahyo, Nur Ryan Dwi Candra Irawan Candra Irawan Chaerul Umam Chaerul Umam Cinantya Paramita D.R.I.M. Setiadi Danang Krismawan, Andi Danang Wahyu Utomo Danar Bayu Adi Saputra Danu Hartanto Daurat Sinaga Daurat Sinaga De Rosal Ignatius Moses Setiadi Desi Purwanti Kusumaningrum Desi Purwanti Kusumaningrum Desi Purwanti Kusumaningrum Didik Hermanto Doheir, Mohamed Doheir, Mohamed Doheir, Mohamed A S Dwi Puji Prabowo Edi Faisal Egia Rosi Subhiyakto Egia Rosi Subhiyakto Eko Hari Rachmanto Eko Hari Rachmawanto Eko Septyasari Elkaf Rahmawan Pramudya Ericsson Dhimas Niagara Erika Devi Udayanti Erlin Dolphina Erna Daniati Erna Zuni Astuti Ery Mintorini Etika Kartikadarma Farrel Athaillah Putra Fidela Azzahra Florentina Esti Nilawati Florentina Esti Nilawati Florentina Esti Nilawati Folasade Olubusola Isinkaye Folasade Olubusola Isinkaye Giovani Ardiansyah Gumelar, Rizky Syah Guruh Fajar Shidik Gusta, Muhammad Bima Hadi, Heru Pramono Haqikal, Hafidz Hartono, Matthew Raymond Haryanto, Christanto Antonius Haryanto, Christanto Antonius Hasbi, Hanif Maulana Hayu Wikan Kinasih Heru Lestiawan Heru Lestiawan Himawan, Reyshano Adhyarta Hyperastuty, Agoes Santika Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ifan Rizqa Ihya Ulumuddin, Dimas Irawan Ikhsanuddin, Rohmatulloh Muhamad Imam Prayogo Pujiono Inzaghi, Reza Bayu Ahmad Isinkaye, Folasade Olubusola Islam, Hussain Md Mehedul Istiqomah, Annisa Ayu Ivan Stepheng Kamila, Izza Putri Kas Raygaputra Ilaga Krismawan, Andi Danang Kumala, Raffa Adhi Kurniawan, Nicholas Alfandhy Kusuma, Edi Jaya Kusuma, Mohammad Roni Kusumawati, Yupie L. Budi Handoko Laksana, Deddy Award Widya Lalang Erawan Latifa, Anidya Nur Liya Umaroh Liya Umaroh, Liya Lucky Arif Rahman Hakim Mabina, Ibnu Farid Maulana Malik Ibrahim Al-Ghiffary Md Kamruzzaman Sarker Md Kamruzzaman Sarker Meitantya, Mutiara Dolla Mohamed Doheir Mohammad Rizal, Mohammad Mohd Yaacob, Noorayisahbe Muchamad Akbar Nurul Adzan Muhammad Rikzam Kamal Mulyono, Ibnu Utomo Wahyu Mulyono, Ibnu Utomo Wahyu Munis Zulhusni Musfiqur Rahman Sazal Muslih Muslih Nabila, Qotrunnada Neni Kurniawati Ningrum, Amanda Prawita Nisa, Yuha Aulia Noor Ageng Setiyanto Noor Ageng Setiyanto, Noor Ageng Noorayisahbe Mohd Yacoob Nova Rijati Nugroho, Widhi Bagus Nur Ryan Dwi Cahyo Oktaridha, Harwinanda Oktayaessofa, Eqania Ozagastra Caluella Prambudi Parti Astuti, Yani Parti Astuti, Yani parti astuti, yani Parti Astuti1, Yani Parti Astuti1, Yani Permana langgeng wicaksono ellwid putra Pradana, Luthfiyana Hamidah Sherly Pradana, Rizky Putra Pradnyatama, Mehta Praskatama, Vincentius Pratama, Zudha Pratiwi, Saniya Rahma Prayogi, Arditya Pulung Nurtantio Andono Purwanto Purwanto Puspa, Silfi Andriana Putri Mega Arum Wijayanti Rabei Raad Ali Rahmalan, Hidayah Raisul Umah Nur Ramadhan Rakhmat Sani Ratih Ariska Robert Setyawan Sabilillah, Ferris Tita Saifullah, Zidan Salma Shafira Fatya Ardyani Salsabila, Alifia Salwa Sania, Wulida Rizki Santoso, Bagus Raffi Saputra, Danar Bayu Adi Sari, Wellia Shinta Sari Shinta Sarker, Md Kamruzzaman Sarker, Md. Kamruzzaman Setiarso, Ichwan Setiawan, Fachruddin Ari Shelomita, Viki Ari Sinaga, Daurat Sinaga, Daurat Sinaga, Daurat Sofyan, Ega Adiasa Solichul Huda, Solichul Sudibyo, Usman Sudibyo, Usman Sudibyo, Usman Sugianto, Castaka Agus Sumarni Adi, Sumarni Suprayogi Suprayogi Suprayogi Suprayogi Sutrisno, Hendra Syabilla, Mutiara Syafira, Zahra Ghina Tan Samuel Permana Tan Samuel Permana Tiara Anggraeny Titien Suhartini Sukamto Umah Nur, Raisul Umaroh, Liya Umaroh, Liya Utomo, Danang Wahyu Velarati, Khoirizqi Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Wintaka, Aristides Bima Yaacob, Noorayisahbe Mohd Yani Parti Astuti Yupie Kusumawati Zaenal Arifin Zulhusni, Munis