Jerawat adalah kondisi kulit yang umum terjadi di dunia, menyerang sekitar 9,4% populasi global. Dampaknya tidak hanya terbatas pada kesehatan fisik, tetapi juga kesehatan mental, seperti menurunkan kepercayaan diri. Deteksi dan diagnosis jerawat secara manual oleh dokter kulit membutuhkan waktu yang tidak sedikit dan bisa memerlukan sumber daya yang signifikan. Selain itu, kemampuan diagnosis bisa bervariasi antar dokter, yang dapat mengakibatkan perbedaan dalam perawatan. Oleh karena itu, diperlukan teknologi untuk mendeteksi jerawat secara otomatis yang dapat mendeteksi dan mengklasifikasikan jerawat secara akurat. Penelitian ini bertujuan untuk mengembangkan model klasifikasi jerawat menggunakan Convolutional Neural Network (CNN) untuk mengidentifikasi empat jenis jerawat: cystic, hormonal, pasir, dan papula berdasarkan gambar wajah. Penelitian ini terdiri dari empat tahapan: pengumpulan data, preprocessing data, pembuatan model klasifikasi jerawat, dan pengujian model. Dataset yang digunakan terdiri dari 400 gambar jerawat yang diambil dari situs Kaggle, dibagi menjadi data latih dan data uji dengan rasio 80:20. Proses preprocessing dilakukan dengan augmentasi data menggunakan ImageDataGenerator dari Keras untuk meningkatkan variasi gambar. Model Convolutional Neural Network yang digunakan adalah InceptionV3 yang dimodifikasi dengan lapisan GlobalAveragePooling2D, dense layer dengan fungsi aktivasi ReLU, dropout sebesar 20%, dan output layer dengan fungsi aktivasi softmax. Model dilatih menggunakan optimizer RMSprop dengan learning rate 0.0001 dan loss function categorical crossentropy selama 70 epoch, dengan callback early stopping untuk menghentikan pelatihan jika tidak ada peningkatan pada loss function. Evaluasi model dilakukan menggunakan confusion matrix untuk mengukur akurasi, presisi, dan recall. Hasil evaluasi menunjukkan bahwa model memiliki akurasi sebesar 85%, presisi 85%, dan recall 84%, yang mengindikasikan kinerja yang baik dalam mengklasifikasikan jenis-jenis jerawat pada gambar wajah. Secara keseluruhan, penelitian ini membuktikan bahwa penggunaan CNN dalam klasifikasi jerawat dapat menghasilkan model yang andal dan efisien. Dengan akurasi, presisi, dan recall yang tinggi, model ini dapat membantu dalam diagnosis dan penanganan masalah kulit berjerawat. Penggunaan teknologi deep learning seperti Convolutional Neural Network menunjukkan potensi besar dalam bidang dermatologi, khususnya dalam mendeteksi dan mengklasifikasikan kondisi kulit secara otomatis. Hasil penelitian ini memberikan kontribusi penting dalam pengembangan sistem otomatis untuk diagnosis jerawat, yang dapat digunakan oleh profesional medis untuk mempercepat dan meningkatkan akurasi diagnosis.