Claim Missing Document
Check
Articles

Super $(a,d)$-$\mathcal{H}$-Antimagic Total Covering of Amalgamation Graph $K_4$ and $W_4$ Anggraeni, Novri; Dafik, Dafik
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1 No 5 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A graph $G(V,E)$ has a $\mathcal{H}$-covering if every edge in $E$ belongs to a subgraph of $G$ isomorphic to $\mathcal{H}$. An $(a,d)$-$\mathcal{H}$-antimagic total covering is a total labeling $\lambda$ from $V(G)\cup E(G)$ onto the integers $\{1,2,3,...,|V(G)\cup E(G)|\}$ with the property that, for every subgraph $A$ of $G$ isomorphic to $\mathcal{H}$ the $\sum{A}=\sum_{v\in{V(A)}}\lambda{(v)}+\sum_{e\in{E(A)}}\lambda{(e)}$ forms an arithmetic sequence. A graph that admits such a labeling is called an $(a,d)$-$\mathcal{H}$-antimagic total covering. In addition, if $\{\lambda{(v)}\}_{v\in{V}}=\{1,...,|V|\}$, then the graph is called $\mathcal{H}$-super antimagic graph. In this paper we study of amalgamasi graph $K_4$ and $W_4$.
Super (a,d)-$\mathcal{H}$-Antimagic Total Selimut pada Graf Shackle Kipas $F_4$ Azizah, Irma; Dafik, Dafik
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1 No 5 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A graph $G(V,E)$ has a $\mathcal{H}$-covering if every edge in $E$ belongs to a subgraph of $G$ isomorphic to $\mathcal{H}$. An $(a,d)$-$\mathcal{H}$-antimagic total covering is a total labeling $\lambda$ from $V(G)\cup E(G)$ onto the integers $\{1,2,3,...,|V(G)\cup E(G)|\}$ with the property that, for every subgraph $A$ of $G$ isomorphic to $\mathcal{H}$ the $\sum{A}=\sum_{v\in{V(A)}}\lambda{(v)}+ \sum_{e\in{E(A)}}\lambda{(e)}$ forms an arithmetic sequence. A graph that admits such a labeling is called an $(a,d)$-$\mathcal{H}$-antimagic total covering. In addition, if $\{\lambda{(v)}\}_{v\in{V}}=\{1,...,|V|\}$, then the graph is called $\mathcal{H}$-super antimagic graph. In this paper we study a super $(a,d)$-$\mathcal{H}$-antimagic total Covering of  Shackle of Fan $F_4$.
Super (a,d)-edge-antimagic total labeling of connected Disc Brake graph Arianti, Inge Yosanda; Dafik, Dafik; Slamin, Slamin
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1 No 5 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Super edge-antimagic total labeling of a graph $G=(V,E)$ with order $p$ and size $q$, is a vertex labeling $\{1,2,3,...p\}$ and an edge labeling $\{p+1,p+2,...p+q\}$ such that the edge-weights, $w(uv)=f(u)+f(v)+f(uv), uv \in E(G)$ form an arithmetic sequence and for $a>0$ and $d\geq 0$, where $f(u)$ is a label of vertex $u$, $f(v)$ is a label of vertex $v$ and $f(uv)$ is a label of edge $uv$. In this paper we discuss about super edge-antimagic total labelings properties of connective Disc Brake graph, denoted by $Db_{n,p}$. The result shows that a connected Disc Brake graph admit a super $(a,d)$-edge antimagic total labeling for $d={0,1,2}$, $n\geq 3$, n is odd and $p\geq 2$. It can be concluded that the result has covered all the feasible $d$.
Super ({\it a,d})-${\mathcal {H}}$-Antimagic Total Selimut pada Shackle Graf Triangular Book H.P, Putri Rizky; Agustin, Ika Hesti; Dafik, Dafik
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1 No 5 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Diberikan $G$ graf sederhana, terhubung dan tidak berarah. $G(V,E)$ memiliki selimut-$\mathcal{H}$ jika setiap sisi pada $E$ bagian dari subgraf $G$ yang isomorphic dengan $\mathcal{H}$. Total selimut $(a,d)$-$\mathcal{H}$-antimagic adalah pelabelan total $\lambda$ dari $V(G)\cup E(G)$ ke bilangan bulat $\{1,2,3,...,|V(G)\cup E(G)|\}$, untuk setiap subgraf $H$ dari $G$ yang isomorfik dengan $\mathcal{H}$ dimana $\sum{H}=\sum_{v\in{V(H)}}\lambda{(v)}+\sum_{e\in{E(H)}}\lambda{(e)}$ merupakan barisan aritmatika. Jika $\{\lambda{(v)}\}_{v\in{V}}=\{1,...,|V|\}$, maka graf disebut graf super $\mathcal{H}$- antimagic. Pada makalah ini, kita mengkaji mengenai super ({\it a,d})-$(Bt_3+2e)$- antimagic total selimut pada shackle graf triangular book dinotasikan dengan $SBt_n$.}
Pengembangan Pewarnaan Titik pada Operasi Graf Khusus Dewi, Nindya Laksmita; Dafik, Dafik
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1 No 5 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Misal diketahui graf sederhana, konektif dan tak berarah $G$, visualisasi dari graf $G$ adalah objek dinyatakan dengan titik atau vertex, sedangkan hubungan antara objek dinyatakan dengan garis atau edge. Salah satu aplikasi yang berkaitan dengan graf adalah pewarnaan graf ({\it graph colouring}) yang terdiri dari pewarnaan titik, sisi, dan wilayah. Dalam makalah ini akan dibahas pewarnaan titik, yaitu memberikan warna pada titik-titik dari suatu operasi graf sehingga tidak ada dua titik yang bertetangga mempunyai warna yang sama. Jumlah warna  minimum yang dapat digunakan untuk mewarnai operasi graf dinyatakan dengan bilangan kromatik. Dalam makalah ini akan dikaji tentang bilangan kromatik pada operasi graf khusus.
Rainbow Connection Hasil Operasi Graf Mahmudah, Muhlisatul; Dafik, Dafik
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1 No 5 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Misalkan $G$ adalah graf terhubung yang konektif dan sederhana. Amalgamasi dari graf $G$ yang dinotasikan dengan $Amal(G,e,n)$, adalah kombinasi graf $G$ yang berpusat di satu sisi $e$ sebagai porosnya. Selanjutnya joint graph $G=G_1 + G_2$ adalah kombinasi dua graf $G_1$ dan $G_2$ dimana$V(G)=V(G_1)\cup V(G_2)$ dan $E(G)= E(G_1)+E(G_2)\cup \{uv|u\epsilon V(G_1),v\epsilon V(G_2)\}$. Suatu $u-v$ $path$ $P$ di $G$ dikatakan $rainbow$ $path$ jika tidak ada dua sisi di $P$ yang memiliki warna sama. Graf $G$ dikatakan $rainbow$ $connected$ jika setiap dua titik yang berbeda di $G$ dihubungkan oleh $rainbow$ $path$. Pewarnaan sisi yang menyebabkan $G$ bersifat $rainbow$ $connected$ dikatakan$rainbow$ $coloring$. $Rainbow$ $connection$ $number$ dari graf terhubung $G$, ditulis $rc(G)$, didefinisikan sebagai banyaknya warna minimal yang diperlukan untuk membuat graf $G$ bersifat $rainbow$ $connected$. Pada makalah ini akan dikaji tentang berapa bilangan $rainbow$ $connection$ untuk graf Buku Segiempat $\mathfrak{B}_n$ dan graf Kipas $\mathcal{K}$$_n$.
Analisa Himpunan Dominasi pada Graf-Graf Khusus Alfarisi, Ridho; Dafik, Dafik; Fatahillah, Arif
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1 No 5 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The advance of science and technology increases proportionally to the development of era. Today era tends to the raise to the advance of ICT. One research interest which supports the ICT development is a graph theory. A dominating set theory is one of a graph theory which has a wide range of applications mainly in communication network and space syntax theory. A set $D$ of vertices of a simple graph $G$, that is a graph without loops and multiple edges, is called a dominating set if every vertex $u\in V(G)-D$ is adjacent to some vertex $v\in D$. The domination number of a graph $G$, denoted by $\gamma_{k}{G}$; $k\in{\{1,2\}}$, is the order of a smallest dominating set of $G$. This research aims to find the domination number of some families of special graphs, disc brake graph $Db_{n,m}$, lampion graph $\pounds_{n,m}$, prism graph $D_{n,m}$, and staked ladder graph $Dt_{n,m}$.
Bilangan Dominasi Dari Graf-Graf Khusus Wardani, Dwi Agustin Retno; Agustin, Ika Hesti; Dafik, Dafik
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1 No 5 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

$Dominating$ $number$  $\gamma (G)$ adalah kardinalitas terkecil dari sebuah $do\-mi\-na\-ting$ $set$. Nilai dari $dominating$ $number$ selalu  $\gamma (G)\subseteq V(G)$. $Dominating$ $set$ merupakan suatu konsep penentuan suatu titik pada graf dengan ketentuan titik sebagai $dominating$ $set$ mengcover titik yang ada disekitarnya dan seminimal mungkin dengan ketentuan graf sederhana yang tidak memiliki loop dan sisi ganda. Diberikan graf $G$ dengan $V$ titik dan $E$ sisi, misalkan $D$ merupakan subset dari $V$. Jika setiap titik dari $V-D$ saling $adjacent$ sedikitnya dengan satu titik dari $D$, maka $D$ dikatakan $dominating$ $set$ dalam graf $G$. Artikel ini akan membahas $dominating$ $set$ pada beberapa graf khusus diantaranya adalah Graf Bunga ($Fl_n$), Graf Gunung Berapi ($\vartheta_n$), Graf Firecracker ($F_{n,k}$), Graf Pohon Pisang ($B_{n,m}$) dan Graf tunas kelapa ($CR_{n,m}$).}
Super $(a,d)$ - Face Antimagic Total dari Graf Shackle $C_5$ Binastuti, Siska; Dafik, Dafik
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1 No 5 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Suatu graf G memiliki orde p, size q dan face s dapat dikatakan super $(a,d)$ face antimagic total bilamana terdapat fungsi bijektif yaitu $f:V(G)\bigcup E(G)\newline\bigcup F(G)$ $\rightarrow \{1,2,...,p+q+s\}$, sedemikian hingga bobot sisinya adalah $W_{s} = \{a_{s},a_{s}+d,a_{s}+2d,...,a_{s}+(f_{s}-1)d\}$ dapat membentuk barisan aritmatika dengan suku awal $a_{s}$, bedanya d dan jumlah wajah sisinya $f_{s}$. Graf tersebut dapat dikatakan super apabila label terkecil yang mungkin muncul dalam label titik-titiknya. Dalam penelitian ini, kita akan mengkaji mengenai super $(a,d)$ face antimagic total dari  Graf Shackle $C_5$}
Super (a,d)-Edge-antimagic Total Labeling of Shakle of Fan Graph Vikade, Wicha Dwi; Dafik, Dafik
Prosiding Seminar Matematika dan Pendidikan Matematik Vol 1 No 5 (2014): Prosiding Seminar Nasional Matematika 2014
Publisher : Prosiding Seminar Matematika dan Pendidikan Matematik

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

A graph $G$ of order $p$ and size $q$ is called an {\it $(a,d)$-edge-antimagic total} if there exist a bijection $f : V(G)\cup E(G) \to \{1,2,\dots,p+q\}$ such that the edge-weights, $w(uv)=f(u)+f(v)+f(uv), uv \in E(G)$, form an arithmetic sequencewith first term $a$ and common difference $d$. Such a graph $G$ is called {\it super} if the smallest possible labels appear on the vertices. In this paper we study super $(a,d)$-edge-antimagic total properties of connected  of amalgamation of Fan Graph. The result shows that amalgamation of Fan Graph admit a super edge antimagic total labeling for $d\in{0,1,2}$ for $n$ $\geq$ 1. It can be concluded that the result of this research has convered all the feasible $n$, $d$.
Co-Authors A Arynda A H Rahmatillah A. Y. Harsya Adawiyah, R Adelia Putri Liowardani Agnes Ika Nurvitaningrum, Agnes Ika Agrita Kanty Purnapraja, Agrita Kanty Agustina M. Agustina Muharromah, Agustina Ahmad Adi Ahmad Musyaffa' Hikamuddin Ahmad Syaiful Rizal, Ahmad Syaiful Aldyon Restu Azkarahman Alfian Futuhul Hadi Alfian Yulia Harsya, Alfian Yulia Alfin Nabila Taufik Alfiyantiningsih, Nur Amalina, Putri Nur Anindyta Anggirena Wulandari Anisa Meilinda Wardani Annadhifi, Muhammad Ilham Nurfaizi Antonius Cahya Prihandoko Arif Fatahillah Arika I. Kristiana Arika Indah Kriatiana Arika Indah Kristiana Arnasyitha Yulianti S, Arnasyitha Arnasyitha Yulianti Soelistya ArRuhimat, QurrotaA’yuniArRuhimat A’yuni Artanty Nastiti, Artanty Asy’ari, Muhammad Lutfi Awalin, Qonita Ilmi Aziza, Adinda Putri A’yun, Qurrotul Bawono, Darian Aji Bayu Aprilianto Brahmanto, Juanda Cangul, Ismail Naci Desak Made Dwika Saniriati Desi Febriani Putri Desi Febriani Putri Desy Tri Puspasari Desy Tri Puspasari, Desy Tri Devi Eka Wardani M, Devi Eka Dewi ANGGRAENI Dewy, Elitta P Dian Anita Hadi, Dian Anita Didik Sugeng Didin Trisnani, Didin Dina Tri Djoni Budi Sumarno Dliou, Kamal Dwi Agustin Retnowardani Dyna Probo Mukti Elok Asmaul Husna Elsa Yuli Kurniawati Elsa Yuli Kurniawati Endang Wahyuningrum Ermita R Albirri Ermita Rizki Albirri Ervin Eka Riastutik, Ervin Eka Ervin Oktavianingtyas Excelsa Suli Wildhatul Jannah Farah Rezita Nurtaatti, Farah Rezita Faruq, Fathulloh fatahillah, arief Fatoni, Muhamad Faizal Fia Cholidah, Fia Firdausiyah, Iftitahul Firman Firman Fitri Wulandari Gembong A. W. Hani'ah Zakin Harianto Setiawan, Harianto Hendry Dwi Saputro Herninda Lucky Oktaviana Hilmiyah Hanani Hobri Husain, Sharifah Kartini Said I H Agustin I H. Agustin I Ikhwandi I M Tirta I Made Tirta I Made Tirta Ida Ariska Ika Hesti A. Ika Hesti Agustin, Ika Hesti Ika Mareta Imanul Umar Hawari Imro’atun Rofikah Indar Setiani Indi Izzah Makhfduloh Inge Yosanda Arianti, Inge Yosanda Irma Azizah Irma Azizah, Irma Istamala Idha Retnoningsih Jackson P Mairing Jannah, Excelsa Suli Wildhatul Jesi Irwanto, Jesi Joni Susanto, Joni K Kasturi K Khasan, K Karinda Rizqy Aprilia, Karinda Rizqy Khilyah Munawaroh Kholifatu Rosyidah Kholifatur Rosyidah Khusnul, Agustina Hotimatus Kiki Kurdianto Kiswara Agung Santoso Kurniawati, Elsa Yuli Kusbudiono Kusbudiono, Kusbudiono Laili, Nuryatul Laily Anisa Nurhidayati Liliek Susilowati Liowardani, Adelia Putri Lubis Muzaki Lusia Dewi Minarti Lusia Dewi Minarti M. Wildan Athoillah Makhfudloh, I I Mardiyah, Fitriyatul Marsidi Marsidi Maylisa, Ika Nur Miftahur Roifah Millatuz Zahroh, Millatuz Moch. Avel Romanza P, Moch. Avel Romanza Mohammad Fadli Rahman Mohanapriya, N. Muhammad Lutfi Asy’ari Muhlisatul Mahmudah, Muhlisatul Mursyidah, Indah Lutfiyatul Murtini Murtini, Murtini N Maylisa N Y. Sari Nabilah Ayu Az-Zahra Nafisa Afwa Sania Nindya Laksmita Dewi, Nindya Laksmita Novalita Anjelia Novian Nur Fatihah Novita Cahya Mahendra Novita Sana Susanti Novri Anggraeni, Novri Nur Alfiyantiningsih Nur Asia Jamil, Nur Asia Nurcholif Diah Sri Lestari Nuris Hisan Nazula Nuwaila Izzatul Muttaqi O A Safiati O. A. Safiati Ojat Darojat Okti Anis Safiati Permatasari, Putri Ayu Pratiwi, Putri Indah Prihandini, R M Prihandini, Rafiantika Megahnia Prihandini, Rafiantika Megahniah Prihandini, RM Prihandoko, AC Prof. Dr.I Nengah Suparta,M.Si . Pujiyanto, Arif Putra Mahendratama Sasongko, Tito Putri Rizky H.P, Putri Rizky Q Qoriatul QurrotaA’yuniArRuhimat A’yuni ArRuhimat Qurrotul A’yun Quthrotul Aini Fuidah R M Prihandini R Ratih R Rohmatullah R. Humaizah Rafiantika M Rafiantika Megahnia Prihandini Rahmadani, M R Rahman, Md. Saidur Randhi N. Darmawan, Randhi N. Randi Pratama Murtikusuma Ratna Syafitri Reza Mega Ardhilia Ridho Alfarisi Ridho Alfarisi, Ridho Ridlo, Zainur Rasyid Riniatul Nur Wahidah Rizki Aulia Akbar Robiatul Adawiyah Robiatul Adawiyah Robiatul Adawiyah Rukmana Sholehah, Rukmana S Slamin S Suciati S Suharto S Sunardi S Susanto S. Chususiyah S. M. Yunika Saddam Hussen Safira Izza Ghafrina Safira Izza Ghafrina Saifudin, Ilham Saniriati, Desak Made Dwika Santoso, Aji Mansur Septory, Brian Juned Shapbian Novindasari, Shapbian Shela Okta Grefina, Shela Okta Sherly Citra Wuni, Sherly Citra Sholihah, Siti Mar’atus Sih Muhni Yunika, Sih Muhni Siska Aprilia Hardiyanti Siska Binastuti Siska Binastuti, Siska Siswono, Hendrik Siti Aminatus Solehah Siti Latifah Siti Mar’atus Sholihah Soleh Chudin Sri Tresnaningsih Sufirman Sufirman Sulistio, Wahyu Sullystiawati, Lusia Herni Sunder, R. Suntusia Suntusia Suparti Supratiningsih Supratiningsih Susanto Susanto Susanto Susanto Susi Setiawani Tanti Windartini, Tanti Tasrip Rudiono Thoyibah, Fifi Tommi Sanjaya Putra Toto Bara Setiawan Tri Dyah Prastiti Ulul Azmi Umi Azizah Anwar Venkatachalam, M. Viantasari, Erwinda Viqedina Rizky Noviyanti Vutikatul Nur Rohmah Wahidah, Riniatul Nur Wahyu Lestari Wahyu Nikmatus Sholihah Wardani, Putu Liana Weny Wijayanti, Weny Wicha Dwi Wicha Dwi Vikade, Wicha Dwi WIHARDJO, EDY Wijayanti, Elsy Y Yunita Yanuarsih, Elly Yessy Eki Fajar Reksi Yuli Kurniawati, Elsa Yuli Nur Azizah, Yuli Nur Z R Ridlo Zainur Rasyid Ridlo