p-Index From 2020 - 2025
12.863
P-Index
This Author published in this journals
All Journal Jurnal technoscientia Jurnal Informatika dan Teknik Elektro Terapan ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika International Journal of Artificial Intelligence Research Informatics for Educators and Professional : Journal of Informatics KOPERTIP: Jurnal Ilmiah Manajemen Informatika dan Komputer JURNAL ILMIAH INFORMATIKA Conference SENATIK STT Adisutjipto Yogyakarta Jurnal ICT : Information Communication & Technology Jurnal Sistem Informasi Kaputama (JSIK) Jurnal Pelayanan dan Pengabdian Masyarakat (Pamas) JISKa (Jurnal Informatika Sunan Kalijaga) Jurnal Informatika dan Rekayasa Perangkat Lunak JURSIMA (Jurnal Sistem Informasi dan Manajemen) JATI (Jurnal Mahasiswa Teknik Informatika) Jurnal Teknik Informatika C.I.T. Medicom JURNAL TEKNOLOGI TECHNOSCIENTIA Jurnal Informatika Terpadu Baselang: Jurnal Ilmu Pertanian, Peternakan, Perikanan dan Lingkungan Jurnal Janitra Informatika dan Sistem Informasi Abdimas Altruis: Jurnal Pengabdian Kepada Masyarakat Jurnal Informatika Teknologi dan Sains (Jinteks) International Journal of Hydrological and Environmental for Sustainability Literasi: Jurnal Pengabdian Masyarakat dan Inovasi J-Icon : Jurnal Komputer dan Informatika Jurnal Teknologi Pangan dan Industri Perkebunan JURSIMA AMMA : Jurnal Pengabdian Masyarakat Jurnal Informatika: Jurnal Pengembangan IT Jurnal Sistem Informasi dan Manajemen Jurnal Accounting Information System (AIMS) INTERNAL (Information System Journal)
Claim Missing Document
Check
Articles

ANALISIS SENTIMEN ULASAN APLIKASI PINTU DI GOOGLE PLAY STORE MENGGUNAKAN ALGORITMA NAIVE BAYES Khotimah, Khusnul; Martanto, Martanto; Dikananda, Arif Rinaldi; Rifa'i, Ahmad
Jurnal Informatika dan Teknik Elektro Terapan Vol 13, No 1 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i1.5789

Abstract

Aplikasi berbasis blockchain seperti Pintu semakin populer di Indonesia sebagai platform investasi modern. Namun, tantangan utama dalam menganalisis ulasan pengguna adalah volume data yang besar dan variasi sentimen yang kompleks. Tujuan dari penelitian ini yaitu untuk mengimplementasikan algoritma Naïve Bayes guna meningkatkan analisis sentimen aplikasi Pintu di ulasan Google Play Store. Data ulasan dikumpulkan melalui web scraping dan diproses melalui tahapan pembersihan teks, normalisasi, penghapusan stopwords, tokenisasi, dan translasi. Sentimen diberi label menggunakan TextBlob, dengan menghapus ulasan netral untuk menyederhanakan klasifikasi menjadi positif dan negatif. Ketidakseimbangan data diatasi menggunakan teknik oversampling SMOTE. Dataset akhir terdiri dari 2.510 ulasan positif (92,9%) dan 191 ulasan negatif (7,1%). Hasil evaluasi menunjukkan akurasi model sebesar 95,07%. Presisi dan recall untuk kelas positif masing-masing mencapai 97% dan 98%, namun performa pada kelas negatif masih terbatas dengan presisi 62% dan recall 58%. Teknik SMOTE berhasil meningkatkan performa keseluruhan, meskipun tantangan dalam mengenali sentimen minoritas tetap ada. 
ALGORITMA K-MEANS UNTUK MENINGKATKAN SEGMENTASI POLA KEKERASAN Fithriyani, Nurul Muna; Martanto, Martanto; Dikananda, Arif Rinaldi; Rohman, Dede
Jurnal Informatika dan Teknik Elektro Terapan Vol 13, No 1 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i1.5795

Abstract

Abstrak. Meningkatnya angka kekerasan terhadap perempuan dan anak-anak di berbagai wilayah telah menimbulkan kebutuhan mendesak akan strategi yang efektif untuk mengidentifikasi dan mengelompokkan daerah-daerah yang rawan kekerasan. Penelitian ini bertujuan untuk mengembangkan metode klasterisasi berbasis algoritma K-Means dalam upaya meningkatkan segmentasi pola kekerasan, khususnya dalam kasus yang melibatkan perempuan dan anak. Dengan menggunakan data kekerasan dari berbagai wilayah, algoritma K-Means diterapkan untuk mengelompokkan kasus berdasarkan karakteristik tertentu yang relevan. Hasil penelitian menunjukkan bahwa algoritma K-Means memiliki potensi yang kuat dalam segmentasi data kekerasan dan mampu memberikan hasil yang lebih optimal dibandingkan metode lain pada kasus yang dipelajari. Penelitian ini memberikan wawasan baru dalam pengelompokan data sosial menggunakan pendekatan klasterisasi, yang pada akhirnya dapat meningkatkan upaya penanganan kasus kekerasan di berbagai wilayah. Penelitian ini menggunakan tahapan Knowladge Discovery in Database (KDD). Data yang diperoleh bersumber dari situs portal https://www.kaggle.com/datasets . Metode k-means clustering yang berfungsi untuk memecah dataset menjadi beberapa kelompok/cluster. Berdasarkan hasil penelitian ini terdapat 2 cluster yaitu cluster 0 dengan jumlah anggota 1573 dan cluster 1 dengan jumlah anggota 3431. pengukuran kinerja menggunakan DBI, K=2 dengan tingkat kinerja 0,459 maka tingkat kinerja yang terbaik karena tingkat dalam dex mendekati 0.133 
e-HRM: Changes in Business and Labor Culture in the Digital Paradigm Syarief, Faroman; Nindiasari, Hepsi; Martanto, Martanto; Febriani, Budi; Wujarso, Riyanto
International Journal of Artificial Intelligence Research Vol 6, No 1.1 (2022)
Publisher : STMIK Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29099/ijair.v6i1.1.588

Abstract

This article reviews electronic Human Resource Management (e-HRM) and the economy's changing business and workforce culture according to the digital paradigm. Based on the definitions and initial framework, the review analyzes the theory used. In diagnosing the ongoing transition to changing work relationships and business culture in the digital age, the study reveals an initial collection of work from a variety of disciplines, the majority of which employ diverse empirical methods and draw from various levels of analysis and e-HRM focus topics. This study employs a qualitative approach and descriptive methodologies. The study's findings indicate that e-HRM offers significant advantages for organizational success, particularly in terms of work efficiency and effectiveness. E-HRM is intended for workers outside the HR department, as well as employees and organizational management. E-HRM enables HR applications to be accessed by personnel outside of the firm at any time and from any location. E-HRM is a transformation in an organization's business and worker culture. These changes include business process activities, workforce planning, recruitment, employee/payroll/employee leave information systems, evaluation and remuneration, performance and training, and employee development.
Penampil Gelombang Tegangan dan Arus Berbasis Arduino Due untuk Generator AC Tiga Fasa MARTANTO, MARTANTO; WIHADI, RB DWISENO; AGUSULISTYO, RONNY DWI; TJENDRO, TJENDRO
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 8, No 2: Published May 2020
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v8i2.336

Abstract

ABSTRAKDalam pengembangan generator tiga fasa magnet permanen diperlukan pengukuran besaran-besaran untuk melihat karakteristik generator. Besaran yang biasanya diukur adalah tegangan, arus, dan daya, namun bentuk gelombang keluaran tegangan dan arus tiap fasa kurang diperhatikan apakah sinus atau tidak. Maka perlu dirancang sebuah sistem yang bisa menampilkan bentuk gelombang tegangan dan arus sekaligus. Sistem ini diimplementasikan menggunakan sensor tegangan, sensor arus, rangkaian pengondisi sinyal, Arduino Due, dan komputer sebagai penampil menggunakan bahasa Python. Hasil pengujian diperoleh bahwa sistem bisa menampilkan bentuk gelombang keluaran tegangan dan arus, menampilkan nilai maksimum, minimum, rerata, dan rms. Nilai galat rata-rata untuk ketiga pengukuran tegangan adalah 1%, dan untuk pengukuran arus adalah 3,15%.Kata kunci: gelombang tegangan dan arus, Arduino Due, Python, tiga fasa ABSTRACTThe development of three phase permanent magnet generators require the measurement of related quantities to determine the characteristics of generator. The common measured quantities are voltage, current, and power. However the voltage and current output waveforms of each phase are not considered. Therefore a system is designed which is able to display voltage and current waveforms at once. This system is implemented using a voltage sensor, current sensor, signal conditioning circuit, Arduino Due, and a computer as a GUI using the Python programming language. The results of implementation and testing show that the GUI is able to display the voltage and current output waveforms, in addition, performs the maximum, minimum, average, and rms values. The average error value for the three voltage measurements is 1%, and for the three current measurements is 3.15%.Keywords: voltage and current waveforms, Arduino Due, Python, three phases
PENGELOMPOKAN HASIL BELAJAR SISWA PADA MASA COVID-19 DENGAN ALGORITMA K-MEANS UNTUK MENJAMIN MUTU PENDIDIKAN DI SMK BINA CENDEKIA Jamaludin, Maulana; Martanto, Martanto; Bahtiar, Agus
JURSIMA Vol 10 No 2 (2022): Jursima Vol. 10 No. 2, Agustus Tahun 2022
Publisher : INSTITUT TEKNOLOGI DAN BISNIS INDOBARU NASIONAL

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47024/js.v10i2.403

Abstract

AbstrakHampir dua tahun, dunia dihadapkan dengan adanya malasah virus mematikan yang dikenal dengan sebutan Coronavirus Disease 2019 atau disingkat Covid-19. WHO telah menetapkan masalah virus corona sebagai suatu pandemic global, pandemic ini telah mengganggu berbagai kegiatan tak terkecuali kegiatan Pendidikan. Kegiatan belajar mengajar di sekolah yang semula dilakukan dengan tatap muka, karena adanya pandemic ini berubah menjadi pembelajaran jarak jauh atau disebut dengan Dalam Jaringan (Daring).. Penelitian ini bertujuan akan Melakukan Penglompokan Hasil Belajar Siswa Pada Masa Covid-19 Dengan Algoritma K-Mean Untuk Menjamin Mutu Pendidikan Di Smk Bina Cendekia. Oleh Karena itu, metode yang akan digunakan penelitian ini adalah metode Algoritma K-Means Clustering. Dilakukan data mining terhadap dataset hasil belajar siswa. Selanjutnya dilakukan praprocessing terhadap dataset tersebut untuk menghilangkan data missing dan menentukan atribut-atribut data yang diperlukan untuk pengelompokkan. Untuk menentukan jumlah kelompok yang ideal maka dilakukan perhitungan nilai kelompok menggunakan Davis Bouldin Indeks serta menghitung distance performance, Penelitian ini menghasilkan pengelompokkan hasil belajar siswa pada masa pandemic covid-19 dengan menggunakan algoritma k-mens akan diperoleh jumlah kelompok sebanyak 2 Cluster Kelompok. Dimana nilai distance performance sebesar 74.166% diperoleh nilai DBI sebesar 0.669Keywords: Pengelompokan, Algoritma K-Means Clustering
KLASIFIKASI MOTIF BATIK JAWA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBORS (KNN) AKBAR, MUHAMAD DENI; Martanto, Martanto; Wijaya, Yudhistira Arie
JURSIMA Vol 10 No 2 (2022): Jursima Vol. 10 No. 2, Agustus Tahun 2022
Publisher : INSTITUT TEKNOLOGI DAN BISNIS INDOBARU NASIONAL

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47024/js.v10i2.412

Abstract

Batik is one of Indonesia's beautiful and well-known heritages throughout the world, batik as a traditional heritage of the archipelago comes with a variety of motifs. Each region has different motifs and different philosophies. The number of Indonesian batik motifs spread from Aceh to Papua, so not everyone can distinguish batik motifs. This study aims to distinguish between Javanese batik motifs and non-Javanese batik motifs. The batik motifs taken by researchers as samples from the Java region were the Mega Mendung batik motif, Lasem batik motif, Sekar Jagad batik motif, Kawung batik motifs and motifs, and for non-Javanese researchers took samples of Cendrawasih batik motifs, Dayak batik motifs, and batik motifs. nutmeg, and Balinese batik motifs. The research method uses the K-Nearest Neighbors (KNN) algorithm which has stages of collecting image on batik motifs, knowing Javanese and non-Javanese batik motifs, pre-processing, feature extraction, image classification, and evaluation of motifs. Color feature extraction is carried out using gray level co-occurrence matrix (GLCM) methods. Based on the test results show that with the application of GLCM and KNN with an image size ratio of 200x200 with a ratio of k=5 the percentage of split image 80% test and 20% training is able to produce an accuracy of 65%.
IMPLEMENTASI TEKNOLOGI QUICK RESPONSE CODE DALAM SISTEM E-TICKETING PADA EVENT ORGANIZER Almadina, Muhammad Fitrian Shousyade; Martanto, Martanto; Dikananda, Arif Rinaldi; Rohman, Dede
Jurnal Informatika dan Teknik Elektro Terapan Vol 13, No 1 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i1.5730

Abstract

Penelitian bertujuan untuk merancang dan menguji seberapa efektif sistem dengan teknologi Quick Response Code untuk mengoptimalkan manajemen acara dan mengevaluasi kepuasan pengguna. Tingkat kepuasan diukur menggunakan metode System Usability Scale (SUS) yang dibagikan kepada 60 responden. Analisis kuesioner menghitung rerata nilai final_score SUS, disertai uji validitas dan reliabilitas menggunakan Cronbach's Alpha. Pengujian Kruskal-Wallis dilakukan untuk menilai perbedaan kepuasan sebelum dan setelah sistem diimplementasi. Hasil analisis menunjukkan nilai rerata final_score SUS sebesar 72.2 (kategori GOOD), dengan tingkat kepuasan HIGH hingga ACCEPTABLE. Uji validitas menyatakan semua pertanyaan valid, dan uji reliabilitas menghasilkan nilai Cronbach Alpha sebesar 0.69, hal ini menunjukkan konsistensi yang baik. Uji Kruskal-Wallis mengungkap perbedaan signifikan (p < 0.001), menunjukkan dampak positif sistem terhadap pengalaman pengguna.
Analisis Algoritma K-Nearest Neighbor terhadap Sentimen Pengguna Aplikasi Shopee Saifurridho, Muhammad; Martanto, Martanto; Hayati, Umi
Jurnal Informatika Terpadu Vol 10 No 1 (2024): Maret, 2024
Publisher : LPPM STT Terpadu Nurul Fikri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54914/jit.v10i1.1054

Abstract

One way to gauge users' thoughts and sentiments towards a particular product, service, or subject is by conducting sentiment analysis on reviews posted on the Google Playstore platform. Among the plethora of apps available on the Google Playstore is Shopee. Due to the vast and unstructured nature of user comments in the review section, it becomes challenging to quickly and accurately grasp the overall information. This research aims to classify sentiments as positive, negative, or neutral, with the hope that the Shopee app can improve. Hence, the K-Nearest Neighbor Algorithm is employed to analyze sentiments to ensure users' opinions regarding their interaction with the Shopee program. Sentiment analysis is utilized to categorize reviews into positive, neutral, and negative groups. A dataset of 2000 entries is used in this analysis, obtained through web scraping, with 70% as training data and 30% as test data. The results indicate that this data split scenario yields the best model, achieving an accuracy of 70%, precision of 50.5%, recall of 44.8%, and an F1-score of 48.3% overall. To optimize results further, the implementation of more optimal data sampling techniques is necessary to attain a more balanced class distribution in both training and test data.
RELOKASI SISTEM PANEL SURYA UNTUK KEPERLUAN POMPA AIR DI PANTAI GRIGAK GUNUNG KIDUL Sumarno, Linggo; Suwarno, Djoko Untoro; Iswanjono, Iswanjono; Martanto, Martanto
ABDIMAS ALTRUIS: Jurnal Pengabdian Kepada Masyarakat Vol 7, No 2 (2024): Oktober 2024
Publisher : Universitas Sanata Dharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24071/aa.v7i2.10198

Abstract

The Grigak Beach community experiences difficulty obtaining clean water, especially during the dry season. The lack of duration of the solar panel system that powers the water pump in the drilled well is the cause. Therefore, an effort was made to relocate the solar panel system from the previous location to a new location, which allows the solar panel system to have a longer lifespan. The community service that was carried out successfully relocated the solar panel system from the old location to the new one. The solar panel system can have a lifespan of about two hours longer.
Comparing optimization hyperparameter long short term memory for rainfall prediction model Nur Hermawan, Ilham; Martanto, Martanto; Dikananda, Arif Rinaldi; Mulyawan, Mulyawan
Jurnal Teknik Informatika C.I.T Medicom Vol 16 No 6 (2025): January : Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/cit.Vol16.2025.942.pp405-414

Abstract

Improving the accuracy of weather prediction, especially rainfall, is very important in various sectors such as agriculture, water resource management, and disaster mitigation. This research aims to optimize the Long Short-Term Memory (LSTM) model in rainfall prediction through the application of hyperparameter optimization using two main techniques: Grid Search and Bayesian Optimization (Optuna). This hyperparameter optimization includes finding the best configuration of important parameters, such as the number of LSTM units, batch size, learning rate, and number of epochs. A historical rainfall dataset from BMKG is used, which is then divided into training and test data to build and test the prediction model. Grid Search performs a thorough exploration of all possible parameter combinations, while Optuna uses a probabilistic Bayesian approach to speed up the optimization process. The results show that hyperparameter optimization significantly improves the performance of LSTM models. The model optimized with Optuna produces a Mean Squared Error (MSE) value of 0.179578 with an execution time of 105.26 seconds, while Grid Search has an MSE of 0.286778 with an execution time of 457.69 seconds. The lower MSE value indicates that the Optuna model has a smaller prediction error, making it more accurate in predicting rainfall. The faster execution time of Optuna also confirms its efficiency in finding the optimal hyperparameter configuration compared to Grid Search. The conclusion of this study confirms that hyperparameter optimization plays an important role in improving the prediction accuracy of LSTM for rainfall. The developed method is expected to be the basis for the development of other weather prediction models as well as support decision-making in various sectors that rely on weather prediction. In addition, this research opens up opportunities for further studies in the optimization of deep learning models in handling complex climate data.
Co-Authors A, Ronny Abdillah, Naufal Abdul Rosid, Rizal Ahmad Rifai Aji Dian Permana, Muhamad Aji Saputra, Mohammad AKBAR, MUHAMAD DENI Alfin Maulana Almadina, Muhammad Fitrian Shousyade Alpian Novansyah, Indi Andini, Eva Ardhanur, Ichlas Asmana, Asmana Augustian Pangestiazi, Irvanda Azahra, Amaliyah Putri Aziz Sahidin, Naufal Bernadeta Wuri Harini Cep Lukman Rohmat Chrisna Basila Rahman, Muhammad Damar Widjaja Darmanto Darmanto Dea Eryanti Putri Dewi Yuliyanti, Dewi Dian Ade Kurnia Dias Bayu Saputra Dikananda, Arif Rinaldi Dilita Pramasmawari Lita Dita Rizki Amalia Diyanti yanti Djoko Untoro Suwarno Dwi Hastuti, Ningrum Edy, Benediktus Yudha Fadhil Muhammad Bsysyar Faisal Adam, Faisal Faizal Rizqi, Muhammad Faroman Syarief, Faroman Fathur Rezki Junaedi, Muhammad fatimah, lilis Fauzan Afrizal, Ricky Febriani, Budi Febriyani, Adinda Fihir, Muhammad Fithriyani, Nurul Muna Fuji Astri, Dewanti Gifthera Dwilestari Hamam, Moh Hardika Hardika, Hardika Harini, BW Haryanto, Agustinus Surya Hayati , Umi Hayati, Umi Heliyanti Susana Hepsi Nindiasari Hidayat, Fajar Ignatius Adi Prabowo Ika Anikah Iksan Maulana, Muhammad Irfan Ali Irfan Ali, Irfan irfan cholid Iswanjono Iswanjono Jamaludin, Maulana Jamalul'ain, Abdul Kamil, Firmanilah Khoirunisa, Pitria Kholilullah, Mohammad khusnul khotimah Linggo Sumarno Lukmanul Hakim Lutfi Hakim Ma'arif Syaefullah, Muhammad Mahardika, Fathoni Maulana Jamaludin Maulana Yusuf, Muhammad Meida Nurus Mirna Mirna Moruk, Ewaldus Mu'min Azis, Muhammad Mubarok Mubarok Muhamad Djaelani Muhamad farhan Tholhah hidayat Muhamad Jihad Andiana Muhamad Taufik Sugandi Muhammad Aditya Rabbani Adit Muhammad Fadhilah Muhammad Haikal Muhammad Hasan Fadlun Muhammad Saifurridho Mujibulloh, Mujibulloh Mulyawan Mulyawan, Mulyawan Musyarofah Musyarofah, Musyarofah Muzani, Muhamad Muzilin, Elin Nailil Amani, Najiyah Nana Suarna Nanita, Nanita Nining Rahaningsih Nova Zulfahmi, A Nova Zulfahmi, A. Nur Asih, Nur Nur Hermawan, Ilham Nurhanifah, Indah Odi Nurdiawa Odi Nurdiawan Panca Wardanu, Adha Petrus Setyo Prabowo Prabowo, PS Prahara, Sukma Primawan, A.Bayu Puji Rahayu Putri, Niken Zeliana Raditya Danar Dana Ramdan Adi Surya, Muhamad Rifa'i, Ahmad Rifa’I, Ahmad Rinaldi Dikananda, Arif Rinaldi, Arif Riskandi, Muhammad Rizal Rizal Rizka Amelia Rohman, Dede Ronny Dwi Agusulistyo Saeful Anwar Safrudin, Muhamad Saifurridho, Muhammad Salsabila Ainal Wasilah, Qonita Samsudin, Risma'ruf Setiyani, Th. Prima Ari Setiyani, TPA Siti Paridah, Ninda Sri Suwartini Subur, Muhamad Sulistiyana Sulistiyana Sumarno, L Suryaningsih Suryaningsih Suwarno, DU Syahri, Ibnu Nava Syam Al ghifari, Muhammad Syamsul Aripin, Muhammad Syaripah, Imas Syifa, Nurkhasanah Fadhila Tati Suprapti Thomas Agam Tjendro Tri Anelia Tri Gustiane, Indri Tuti Hartati Umi Hayati Ummiyati Ummiyati W Widyastuti, W Wibowo, Daniel Widjaja, D Wihadi, Dwiseno WIHADI, RB DWISENO Willy Prihartono Wiwien Widyastuti Wujarso, Riyanto Yudhistira Arie Wijaya Zulfahmi, A. Nova