Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Scripta Technica: Journal of Engineering and Applied Technology

Integrasi Teknologi Deep Learning dalam Pengukuran Kebugaran Fisik Siswa Sekolah Menengah Atas Butsiarah
Journal of Engineering and Applied Technology Vol 1 No 2 (2025): December: Scripta Technica: Journal of Engineering and Applied Technology
Publisher : CV SCRIPTA INTELEKTUAL MANDIRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.65310/8zgs6b61

Abstract

This study aims to integrate deep learning technology to measure the physical fitness of high school students more accurately and efficiently than traditional manual methods. A total of 240 students from three schools participated in the assessment of five fitness components: cardiovascular endurance, muscular strength, flexibility, speed, and body mass index (BMI). A Convolutional Neural Network (CNN)-based system was employed to analyze students’ movement video data and evaluate their fitness levels. The results show that the deep learning model achieved an accuracy of 94.6% compared to manual assessments by professional trainers, while reducing evaluation time by 62% (from 25 minutes to 9.5 minutes per student) and improving inter-rater consistency from 0.71 to 0.93. Additionally, 87% of physical education teachers reported that the system was highly beneficial for assessment and documentation. These findings indicate that the integration of deep learning enhances the accuracy, efficiency, and objectivity of physical fitness evaluation and holds significant potential for broader application in technology-based physical education.
Co-Authors A Sumardin A, Andryanto Abigail, Omita Ade Bukhari Agus Halid Agus Halid Ahmad Nur Ikhsan Ahmad Yani ahmad yani Alim, Bahrul Alimsyah, Andi Saiful Aminah Andi M Yusuf Andi Maulidinnawati Abdul Kadir Parewe Andi Ridwan Andika marsuki Andryanto A ANGRIAWAN, RANDY Apriliani, Nurlinda Askar Taliang Attahabrani, Muh Akbar B, Angelin Marici Bahrul Alim Bara, Rivanky Valensius Dayatri, Dayatri Elly Warni Fatoni Fatoni Fatoni Febri Hidayat Saputra Fitriana M Sabir H, Muhammad Rizal Hasanah Nur Hasbi Asyhari Hasriana Hasriani Hasriani, Hasriani Husain Syam Ichfan, Muhammad Ikhsan, Ahmad Nur Ilham Ilham Irvan Kamaruddin Kamaruddin Khaidir Rahma Nasir Kurniawan, Ahmad Latif, Nuraida Lillyan Hadjaratie Manda Rohandi Mansyur Mansyur Markani Markani Markani, Markani Mashud, Mashud Muchlis Polin Muchtar, Nur Azizah Muh Akbar Attahabrani Muh. Adnan Hudain Muh. Ilham Ramadhan Muh. Ilham Ramadhan Muhajirin, Muhajirin Muhammad Arafah Muhammad Ashar Pahany Muhammad Faisal Lutfi Amri Muhammad Ichfan MUHAMMAD ICHFAN ASKAR Muhammad Qadri Muhammad Rizal Muhammad Rizal H MUHAMMAD RIZAL H Mursalim Mursalim Mursalim Mursalim Mursalim Mursalim mursalim mursalim Neneng Awaliah Nur Alisa Nur, Hasanah - Nurfaizah Nurfaizah Nurul Khusnah Nurul Khusnah, Nurul NURZAENAB, NURZAENAB Pasnur Pasnur Qadri, Muhammad Rahmatia Rahmatia Ramlah P Randy Angriawan Raswadi, Mohammad Dika Ratnawati Ratnawati Ratnawati Rijal, Muhammad Risaldi Risaldi Rizal Saputra, Febri Hidayat Sitti Suhada Sri Ayu Ashari Supriadi Sahibu Supriadi Sahibu Suryadi Syamsu Suryadi Syamsu, Suryadi Syahrul Zaum Syam, Husain - Taliang, Askar tamra tamra TAMRAH Tamsir Taslim, A. Mutmainnah Tatik Maslihatin Wabdillah Wabdillah, Wabdillah Yani, Ahmad Yunus, Adinda putri