p-Index From 2020 - 2025
4.434
P-Index
This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Ilmu Pertanian Indonesia Agromet MANAJEMEN IKM: Jurnal Manajemen Pengembangan Industri Kecil Menengah Jurnal Pustakawan Indonesia FORUM STATISTIKA DAN KOMPUTASI Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi Jurnal Pembangunan Wilayah dan Kota Agrikultura Jurnal Keteknikan Pertanian Proceedings of KNASTIK TELKOMNIKA (Telecommunication Computing Electronics and Control) Jurnal Ilmu Komputer dan Agri-Informatika Forum Agribisnis SITEKIN: Jurnal Sains, Teknologi dan Industri Jurnal Teknologi Informasi dan Ilmu Komputer Journal of ICT Research and Applications Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management) International Journal of Advances in Intelligent Informatics Jurnal Aplikasi Bisnis dan Manajemen (JABM) E-Journal Widyariset JOIN (Jurnal Online Informatika) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Informatika Pertanian Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control JITK (Jurnal Ilmu Pengetahuan dan Komputer) Jurnal Informatika Universitas Pamulang Jurnal ULTIMATICS CYBERNETICS BHUMI: Jurnal Agraria dan Pertanahan Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika JURNAL METEOROLOGI DAN GEOFISIKA Building of Informatics, Technology and Science Journal of Robotics and Control (JRC) Indonesian Journal of Electrical Engineering and Computer Science Computer Science and Information Technologies Jurnal Tanah dan Iklim Widyariset Aiti: Jurnal Teknologi Informasi Jurnal Pustakawan Indonesia Makara Journal of Science Eduvest - Journal of Universal Studies J-Icon : Jurnal Komputer dan Informatika Jurnal Sistem Informasi
Claim Missing Document
Check
Articles

PERAMALAN AWAL MUSIM HUJAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION LEVENBERG-MARQUARDT Agus Buono; Alif Kurniawan; Akhmad Faqih
Seminar Nasional Aplikasi Teknologi Informasi (SNATI) 2012
Publisher : Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini difokuskan pada pemodelan Jaringan Syaraf Tiruan propagasi balik Levenberg-Marquardt untuk prediksi Awal Musim Hujan (AMH), dengan mengambil studi kasus Kabupaten Indramayu. Peubah yang dipergunakan sebagai prediktor adalah Southern Oscillation Index (SOI). Pemilihan bulan untuk data SOI berdasar nilai korelasi pada taraf nyata 5%. Sedangkan peubah respon adalah awal musim hujan satu periode ke depan yang diukur dalam dasarian (10 harian). Dari 30 tahun periode data (1978-2007), selanjutnya dilakukan pemodelan JST dengan 4 variasi jumlah hidden neuron (5, 10, 15 dan20) dan divalidasi dengan metode Leave One Out (LOO) cross validation untuk melihat skil dari model dalam melakukan prediksi. Hasil percobaan menunjukkan bahwa SOI bulan Juni, Juli dan Agustus mempunyai korelasi yang kuat dengan awal musim hujan, dengan korelasi masing-masing sebesar -0.46, -0.368, dan -0.364. Berdasar SOI pada 3 bulan tersebut dibangun model JST dengan output AMH. Skil model JST diukur menggunakan korelasi antara observasi dengan hasil prediksi. Korelasi tertinggi diperoleh dengan menggunakan hidden neuron 20, yaitu sebesar 0.99. Sedangkan untuk hidden neuron 5, 10 dan 15 masing-masing menghasilkan prediksi dengan korelasi sebesar 0.58, 0.7 dan 0.8.
PENGENALAN KADAR TOTAL PADAT TERLARUT PADA BUAH BELIMBING MANIS BERDASAR CITRA RED-GREEN-BLUE DENGAN ANALISIS KOMPONEN UTAMA SEBAGAI EKSTRAKSI CIRI DAN JARAK EUCLIDEAN SEBAGAI PENGENAL POLA Agus Buono; Irmansyah .
Jurnal Ilmu Komputer dan Informasi Vol 2, No 1 (2009): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (383.734 KB) | DOI: 10.21609/jiki.v2i1.126

Abstract

Pada paper ini, dilakukan pemilihan feature dari citra RGB (Red-Green-Blue) untuk memprediksi tingkat kemanisan buah belimbing yang dicirikan dengan kandungan TPT (Total Padat Terlarut). Dari feature terpilih, dilakukan transformasi komponen utama satu dimensi (1D-PCA) dan dua dimensi (2D-PCA) untuk mereduksi dimensi citra. Kemudian dilanjutkan dengan proses pengenalan tingkat kemanisan yang dalam paper ini dikelompokkan menjadi tiga, yaitu manis, sedang, dan asam. Nilai batas tiap kelompok didasarkan pada bentuk histogram nilai TPT. Dari 300 citra buah belimbing diperoleh hasil bahwa secara akurasi, teknik 1D-PCA maupun 2D-PCA memberikan hasil yang relatif sama. Namun dari segi kecepatan, 2D-PCA jauh lebih cepat dibanding 1D-PCA, khususnya pada bagian pembentukan sumbu. Model hubungan tingkat kemanisan sebagai fungsi dari nilai RGB memberikan tingkat determinasi terbesarnya 69.9%. Percobaan menunjukkan bahwa 1D-PCA maupun 2D-PCA mampu menerangkan sekitar 95% model hubungan tersebut yang dikembangkan pada ruang asal. Teknik PCA digabungkan dengan jarak Euclidean untuk pengenalan mampu mengenali buah kelompok manis dengan akurasi 100%. Sedangkan untuk kelompok asam dan sedang teknik yang dilakukan gagal melakukan pengenalan dengan baik
Performance Comparison Between Support Vector Regression and Artificial Neural Network for Prediction of Oil Palm Production Mustakim Mustakim; Agus Buono; Irman Hermadi
Jurnal Ilmu Komputer dan Informasi Vol 9, No 1 (2016): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (668.754 KB) | DOI: 10.21609/jiki.v9i1.287

Abstract

The largest region that produces oil palm in Indonesia has an important role in improving the welfare of society and economy. Oil palm has increased significantly in Riau Province in every period, to determine the production development for the next few years with the functions and benefits of oil palm carried prediction production results that were seen from time series data last 8 years (2005-2013). In its prediction implementation, it was done by comparing the performance of Support Vector Regression (SVR) method and Artificial Neural Network (ANN). From the experiment, SVR produced the best model compared with ANN. It is indicated by the correlation coefficient of 95% and 6% for MSE in the kernel Radial Basis Function (RBF), whereas ANN produced only 74% for R2 and 9% for MSE on the 8th experiment with hiden neuron 20 and learning rate 0,1. SVR model generates predictions for next 3 years which increased between 3% - 6% from actual data and RBF model predictions.
DIAGNOSIS GANGGUAN SISTEM URINARI PADA ANJING DAN KUCING MENGGUNAKAN VFI 5 Agus Buono; Dhany Nugraha Ramdhany; Aziz Kustiyo; Ekowati Handharyani
Jurnal Ilmu Komputer dan Informasi Vol 2, No 2 (2009): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (388.455 KB) | DOI: 10.21609/jiki.v2i2.131

Abstract

Sistem urinari hewan dapat dibagi menjadi 2 bagian yaitu sistem urinari bagian atas dan sistem urinari bagian bawah. Ginjal yang merupakan bagian dari sistem urinari memiliki 2 fungsi penting, yaitu filtrasi dan reabsorpsi. Dalam mendiagnosis penyakit yang diderita hewan pada sistem urinarinya terdapat beberapa kendala. Pada penelitian ini, dikembangkan model untuk mendiagnosis gangguan sistem urinari pada anjing dan kucing dengan menggunakan algoritma VFI 5 berdasarkan gejala klinis (terdapat 37 feature) dan pemeriksaan laboratorium (39 feature). Percobaan dilakukan baik pada feature gejala klinis dan juga pada feature pemeriksaan laboratorium. Hasil pengamatan yang dilakukan menunjukkan bahwa akurasi rata-rata sebesar 77,38% untuk percobaan dengan feature gejala klinis, dan 86,31% untuk percobaan dengan feature pemeriksaan laboratorium. Peningkatan ini mengindikasikan bahwa dalam mendiagnosis penyakit dalam sistem urinari, pemeriksaan laboratorium masih sangat dibutuhkan dalam menentukan hasil diagnosis suatu penyakit.
Support Vector Regression untuk Prediksi Produktivitas Kelapa Sawit di Provinsi Riau Mustakim Mustakim; Agus Buono; Irman Hermadi
SITEKIN: Jurnal Sains, Teknologi dan Industri Vol 12, No 2 (2015): Juni 2015
Publisher : Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/sitekin.v12i2.990

Abstract

Krisis energi yang melanda wilayah Provinsi Riau dan sekitarnya memberikan dampak penurunan nilai ekonomi masyarakat, hal tersebut disebabkan salah satunya adalah negara selalu bergantung kepada sumber energi fosil. Upaya pemerintah untuk mengatasi krisis energi telah dilakukan dengan mengganti energi fosil dengan energi alternatif terbarukan dari limbah kelapa sawit. Produksi dan produktifitas kelapa sawit di Provinsi Riau memiliki peringkat terbesar di Indonesia, hal ini menjadi gambaran akan terwujudnya energi alternatif masa depan di Riau. Penelitian ini melakukan prediksi produksi dan produktifitas untuk kedepannya dengan menggunakan metode Support Vector Regression. Dari hasil percobaan yang dilakukan, diperoleh nilai prediksi untuk kedepannya mengalami penurunan hingga 52% dan hanya mengalami kenaikan 5 dari 74 lokasi sebesar 8% . Kernel SVR terbaik dari kombinasi percobaan ini adalah Radial Basis Function dengan koefisien determinasi (R2) sebesar 95% dan nilai error galat (MSE) sebesar 6% terdapat pada fold 1 dengan rentang γ=20 dan C 23.
Pengembangan Algoritme Niching Particle Swarm Optimization untuk Pencarian Target pada Sistem Multi-Robot Siti Raehan; Agus Buono; Medria Kusuma Dewi Hardhienata
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 4: Agustus 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.0813173

Abstract

Robot seringkali digunakan untuk mencari target, dalam hal ini target bisa korban, barang berbahaya dan tidak bisa dijangkau oleh manusia sehingga diganti menggunakan robot.Robot melakukan pencarian untuk menemukan target yang kemudian mengalokasikan diri ketarget dengan asumsi bahwa targetnya dapat memancarkan sinyal. Permasalahan tersebut dipandang sebagai suatu masalah optimasi. Salah satu teknik yang dapat menyelesaikan masalah optimasi merupakan algoritme Particle Swarm Optimization (PSO). Masalah yang sering ditangani PSO sampai saat ini hanya sebatas masalah single-target. Beberapa masalah pada dunia nyata merupakan masalah multi-target, sehingga tidak dapat diselesaikan dengan algoritme PSO. Multi-target merupakan pencarian multi-robot untuk mengoptimasi pencarian target pada satu atau lebih titik optimum di dalam ruang pencarian. Masalah optimasi pada multi-target dapat diselesaikan menggunakan algoritme Niching Particle Swarm Optimization (NichePSO). Penelitian ini bertujuan untuk mengembangkan algoritme NichePSO untuk pencarian target pada sistem multi-robot. Pengembangan algoritme dilakukan dengan menggabungkan algoritme NichePSO dengan parameter robot e-puck yang merupakan kontribusi pertama pada penelitian ini. Kontribusi kedua adalah menerapkan algoritme penghindaran dan menggunakan teknik reflecting untuk robot yang keluar dari batas area pencarian.Pada studi ini membandingkan hasil performa antara algoritme NichePSO tanpa algoritme penghindaran dan dengan algoritme penghindaran, diuji dengan beberapa rintangan dalam lingkungan statis. Hasil penelitian menunjukkan bahwa pengembangan algoritme NichePSO pada tanpa algoritme penghindaran dan dengan algoritme penghindaran jauh berbeda dalam jumlah tabrakan tetapi tidak berbeda secara signifikan dalam waktu pencarian dan nilai fitnes. Abstract Robots are often used to find targets, in this case targets can be victims, dangerous goods and cannot be reached by humans so they are replaced using robots. The robot does a search to find a target which then allocates itself to the target assuming that the target can emit a signal. This problem is seen as an optimization problem. One technique that can solve optimization problems is the Particle Swarm Optimization (PSO) algorithm. The problem that is often handled by PSO to date is only limited to single-target problems. Some real-world problems are multi-target problems, so they cannot be solved by the PSO algorithm. Multi-target is a multi-robot search to optimize target search at one or more optimum points in the search space. The problem of optimization on multi-targets can be solved using the Niching Particle Swarm Optimization (NichePSO) algorithm. This study aims to develop a NichePSO algorithm for target search on multi-robot systems. The development of the algorithm is done by combining the NichePSO algorithm with the e-puck robot parameters which is the first contribution to this research. The second contribution is to apply avoidance algorithms and use reflecting techniques for robots that come out of the boundary of the search area. In this study comparing the performance results between the NichePSO algorithm without the avoidance algorithm and with the avoidance algorithm, tested with several obstacles in a static environment. The results showed that the development of the NichePSO algorithm without the avoidance algorithm and with the avoidance algorithm differed significantly in the number of collisions but did not differ significantly in search time and fitness values. Robot seringkali digunakan untuk mencari target, dalam hal ini target bisa korban, barang berbahaya dan tidak bisa dijangkau oleh manusia sehingga diganti menggunakan robot. Robot melakukan pencarian untuk menemukan target yang kemudian mengalokasikan diri ke target dengan asumsi bahwa targetnya dapat memancarkan sinyal. Permasalahan tersebut dipandang sebagai suatu masalah optimasi. Salah satu teknik yang dapat menyelesaikan masalah optimasi merupakan algoritme Particle Swarm Optimization (PSO). Masalah yang sering ditangani PSO sampai saat ini hanya sebatas masalah single-target. Beberapa masalah pada dunia nyata merupakan masalah multi-target, sehingga tidak dapat diselesaikan dengan algoritme PSO. Multi-target merupakan pencarian multi-robot untuk mengoptimasi pencarian target pada satu atau lebih titik optimum di dalam ruang pencarian. Masalah optimasi pada multi-target dapat diselesaikan menggunakan algoritme Niching Particle Swarm Optimization (NichePSO). Penelitian ini bertujuan untuk mengembangkan algoritme NichePSO untuk pencarian target pada sistem multi-robot. Pengembangan algoritme dilakukan dengan menggabungkan algoritme NichePSO dengan parameter robot e-puck yang merupakan kontribusi pertama pada penelitian ini. Kontribusi kedua adalah menerapkan algoritme penghindaran dan menggunakan teknik reflecting untuk robot yang keluar dari batas area pencarian.Pada studi ini membandingkan hasil performa antara algoritme NichePSO tanpa algoritme penghindaran dan dengan algoritme penghindaran, diuji dengan beberapa rintangan dalam lingkungan statis. Hasil penelitian menunjukkan bahwa pengembangan algoritme NichePSO pada tanpa algoritme penghindaran dan dengan algoritme penghindaran jauh berbeda dalam jumlah tabrakan tetapi tidak berbeda secara signifikan dalam waktu pencarian dan nilai fitnes.
Blockchain dan Kecerdasan Buatan dalam Pertanian : Studi Literatur Fajar Delli Wihartiko; Sri Nurdiati; Agus Buono; Edi Santosa
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 1: Februari 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.0814059

Abstract

Dewasa ini teknologi blockchain dan kecerdasan buatan (artificial intelligence/AI) telah diimplementasikan dalam bidang pertanian. Teknologi blockchain menjanjikan keamanan dan peningkatan kepercayaan untuk pengguna. Teknologi kecerdasan buatan menjanjikan berbagai kemudahan bagi pengguna. Perpaduan kedua teknologi tersebut dapat meningkatan kepercayaan terhadap sistem kecerdasan buatan (blockchain for AI) atau dapat juga digunakan untuk meningkatkan kinerja sistem blockchain (AI for blockchain). Tujuan penelitian ini mengulas kedua teknologi tersebut dalam studi literatur serta memberikan tantangan riset ke depan terkait implementasinya di bidang pertanian.  Metodologi yang digunakan adalah Systematic Literature Review (SLR) dan text mining. Text mining digunakan untuk memberikan deskripsi riset yang ada berdasarkan kata-kata di setiap artikel terpilih. SLR digunakan untuk memberikan ulasan yang komprehensif terkait riset Blockchain dan kecerdasan Buatan dalam pertanian. Hasil penelitian menunjukan bahwa terdapat 10 % penelitian terkait penerapan blockchain dan AI dalam pertanian. Riset tersebut memiliki potensi besar untuk berkembang terlihat dari peningkatan jumlah publikasi dalam 2 tahun terakhir. Kontribusi penelitian ini meliputi posisi riset terkini dan usulan riset ke depan dengan mempertimbangkan kondisi pertanian Indonesia. Posisi riset tersebut didominasi komunitas peneliti dari negara-negara di Asia seperti India (33%), Pakistan (33%), China (14%) dan Korea (14%). Originalitas penelitian ini terletak pada studi literatur dari integrasi teknologi blockchain dan kecerdasan buatan dalam bidang pertanian menggunakan SLR dan text mining. AbstractArtificial intelligence and blockchain technology are being developed and implemented in Agriculture. Blockchain technology promises security and trust for users. Moreover, artificial intelligence technology promises convenience for users. The combination of these two technologies will increase trust in artificial intelligence systems. Besides, this combination can also increase security on the blockchain system through the application of artificial intelligence. This paper summarizes the application of both technologies and reviews them in a systematic literature review, presents a description of articles based on text mining, and provides future research challenges related to the implementation of blockchain and artificial intelligence in agriculture. The methodologies used are Systematic Literature Review (SLR) and text mining. Text mining is used to describe a description of existing research based on the words in each selected article. SLR is used to provide a comprehensive review of Blockchain research and Artificial intelligence in agriculture. The results showed that there were 10% of research related to the application of blockchain and AI in agriculture. This research has great potential for growth as seen from the increase in the number of publications in the last 2 years. The contribution of this research includes the latest research positions and future research proposals taking into account the conditions of Indonesian agriculture. The research position is dominated by the research community from countries in Asia such as India (33%), Pakistan (33%), China (14%) and Korea (14%). The originality of this research is a literature study on the integration of blockchain and artificial intelligence in agriculture using SLR and text mining.
SPEAKER IDENTIFICATION USING HYBRID MODEL OF PROBABILISTIC NEURAL NETWORK AND FUZZY C-MEANS Vicky Zilvan; Agus Buono; Sri Nurdiati
Widyariset Vol 16, No 2 (2013): Widyariset
Publisher : Pusbindiklat - LIPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (182.92 KB) | DOI: 10.14203/widyariset.16.2.2013.341-348

Abstract

A hybrid model of Probabilistic Neural Network and Fuzzy C-Means has been developed. The model has been applied using Mel Frequency Cepstrum Coefficients (MFCC) as feature extraction for identification. In addition to the natural voice, the effect of noise has also been taken into account. It has been shown that the model has good accuracy at 96% for voice without noise, 85.5% for voice with noise at the level of signal to noise ratio 30, and 60% for voice with noise at the level of signal to noise ratio 20. It has also been concluded that the clustering procedure using Fuzzy C-Means could improve the accuracy up to 96% for large number of training data.
Pengenalan Suara Paru-Paru dengan MFCC sebagai Ekstraksi Ciri dan Backpropagation sebagai Classifier Fadhilah Syafria; Agus Buono; Bib Paruhum Silalahi
Jurnal Ilmu Komputer & Agri-Informatika Vol. 3 No. 1 (2014)
Publisher : Departemen Ilmu Komputer - IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (568.648 KB) | DOI: 10.29244/jika.3.1.27-36

Abstract

Paru-paru merupakan organ vital manusia yang berperan dalam proses pernapasan. Jika paru-paru mengalami gangguan maka sistem pernapasan manusia juga akan mengalami gangguan yang bisa menyebabkan kecacatan bahkan kematian. Untuk mengevaluasi keadaan paru-paru dapat dilakukan dengan mendengarkan suara pernapasan dengan menggunakan stateskop. Teknik ini dikenal dengan teknik auskultasi. Teknik ini paling sering digunakan namun memiliki beberapa kelemahan yaitu suara paru-paru berada pada frekuensu rendah, masalah kebisingan lingkungan, kepekaan telinga, hasil analisa yang subjektif, dan pola suara yang hampir mirip. Karena faktor-faktor di atas kesalahan diagnosa bisa terjadi jika proses auskultasi tidak dilakukan dengan benar. Dalam penelitian ini, akan dibuat pengenalan suara paru-paru normal dan abnormal menggunakan Mel Frequency Cepstrum koefisien (MFCC) sebagai ekstraksi ciri dan Backpropagation sebagai classifier. Suara paru-paru akan dihitung Coeffisient Ceptral nya sebagai penciri dari masing-masing suara untuk selanjutnya dikenali dengan menggunakan Backpropagation. Metode yang diusulkan memberikan akurasi 93.97% untuk data latih dan 92.66% untuk data uji.Kata kunci: Backpropagation, MFCC, pengenalan suara paru-paru
Klasifikasi Metagenom dengan Metode Naïve Bayes Classifier Dian Kartika Utami; Wisnu Ananta Kusuma; Agus Buono
Jurnal Ilmu Komputer & Agri-Informatika Vol. 3 No. 1 (2014)
Publisher : Departemen Ilmu Komputer - IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1294.449 KB) | DOI: 10.29244/jika.3.1.9-17

Abstract

Studi metagenom merupakan langkah penting pada pengelompokan taksonomi. Pengelompokan pada metagenom dapat dilakukan dengan menggunakan metode binning. Binning diperlukan untuk mengelompokkan contigs yang dimiliki oleh masing-masing kelompok spesies filogenetik. Pada penelitian ini, binning dilakukan dengan menggunakan pendekatan komposisi berdasarkan supervised learning (pembelajaran dengan contoh). Metode supervised learning yang digunakan yaitu Naïve Bayes Classifier. Adapun metode yang digunakan untuk ekstraksi ciri adalah dengan melakukan perhitungan frekuensi k-mer. Klasifikasi pada metagenom dilakukan berdasarkan tingkat takson genus. Dari proses klasifikasi yang dilakukan, akurasi yang diperoleh dengan menggunakan fragmen pendek (400 bp) adalah 49.34 % untuk ekstraksi ciri 3-mer dan 53.95 % untuk ekstrasi ciri 4-mer. Sementara itu, untuk fragmen panjang (10 kbp), akurasi mengalami peningkatan yaitu 82.23 % untuk ekstraksi ciri 3-mer dan 85.89 % untuk esktraski ciri 4-mer. Dari hasil tersebut dapat disimpulkan bahwa akurasi semakin tinggi seiring dengan semakin panjangnya ukuran fragmen. Selain itu, penelitian ini juga menyimpulkan bahwa metode ekstrasi ciri yang memberikan hasil paling maksimal adalah dengan menggunakan ekstraksi ciri 4-mer.Kata Kunci: metagenom, k-mer, Naïve Bayes Classifier, binning, klasifikasi
Co-Authors Ade Fruandta Adi Rakhman Aditya Cipta Raharja Agung Prajuhana Putra Akhmad Faqih Alif Kurniawan Alvin Fatikhunnada Anang Kurnia Angga Wahyu Pratama Aries Maesya Arif Imam Suroso Arini Aha Pekuwali Arini Pekuwali Astuti, Indah Puji Atik Pawestri Sulistyo Aziz Kustiyo Aziz Rahmad Benyamin Kusumoputro Bib Paruhum Silalahi Budi Nugroho Cece Sumantri Dhany Nugraha Ramdhany Dian Kartika Utami Djaksana, Yan Mitha Edi Santosa Ekowati Handharyani Elisabeth Sri Hendrastuti Endang Purnama Giri Erliza Hambali Erliza Noor Ernan Rustiadi Fadhilah Syafria Fadhilah Syafria Fajar Delli Wihartiko Fildza Novadiwanti Firdaus, Husni Firmansyah Ibrahim Fredicia Fredicia Galih Kurniawan Sidik Galih Kurniawan Sidik Galih Kurniawan Sidik Gema Parasti Mindara Gendut Suprayitno Gita Adhani GUNARSO GUNARSO Hastuadi Harsa Herianto Herianto Hidayat Hidayat Hidayat I Wayan Astika Ibrahim, Firmansyah Iis Rodiah Imas Sukaesih Sitanggang Indah Prasasti Indah Puji Astuti Indah Puji Astuti Indra Jaya Inggih Permana Inna Noviyanti Irman Hermadi Irmansyah . Irsal Las Irsal Las ISKANDAR ZULKARNAEN SIREGAR Kana Saputra S Karlisa Priandana Kikin H Mutaqin Kudang Boro Seminar Laila Sari Lubis Laila Sari Lubis Lailan Syaufina Lidya Ningsih Liyantono . M. Cholid Mawardi M. Mukhlis Marcelita, Faldiena Medria Kusuma Dewi Hardhienata Mohamad Solahudin Muhammad Ardiansyah Muhammad Rafi Muttaqin Mushthofa Mustakim Mustakim Mustakim Mustakim Muttaqin, Muhammad Rafi Niswati, Za'imatun Nova Firdaus Nurhayati, Yosi Popong Nurhayati Pratistya, Sayu Desty Puspita Kartika Sari Puspita Kartika Sari Putri Yuli Utami Raharja, Aditya Cipta Rahmat Hidayat Rizal Syarief Rizaldi Boer Rizki, Arviani RR. Ella Evrita Hestiandari Santo, Deni Sanusi Sanusi Sari Agustini Hafman Savitri, Siska Sholihah, Walidatush Sidik, Galih Kurniawan Siregar, Ardinsyah Sitanggang, Imas S. Siti Kania Kushadiani Siti Raehan Sony Hartono Wijaya Sri Dianing Asri Sri Nurdiati Sri Wahjuni Stephane Douady Suharno Suharno Suharno Sumanto, Sumanto Syeiva Nurul Desylvia Taufik Djatna Thoyyibah Tanjung Toto Haryanto Trukan Sri Bahukeling Uliniansyah, Mohammad Teduh Vicky Zilvan Wisnu Ananta Kusuma Wisnu Jatmiko Woro Estiningtyas Woro Estiningtyas Woro Estiningtyas Yandra Arkeman Yenni Vetrita Yoanda, Sely