This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) Jurnal Ilmu Pertanian Indonesia Agromet MANAJEMEN IKM: Jurnal Manajemen Pengembangan Industri Kecil Menengah Jurnal Pustakawan Indonesia FORUM STATISTIKA DAN KOMPUTASI Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Jurnal Ilmu Komputer dan Informasi Jurnal Pembangunan Wilayah dan Kota Agrikultura Jurnal Keteknikan Pertanian Proceedings of KNASTIK Jurnal Simetris TELKOMNIKA (Telecommunication Computing Electronics and Control) Jurnal Ilmu Komputer dan Agri-Informatika Forum Agribisnis SITEKIN: Jurnal Sains, Teknologi dan Industri Jurnal Teknologi Informasi dan Ilmu Komputer Journal of ICT Research and Applications Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management) International Journal of Advances in Intelligent Informatics Jurnal Aplikasi Bisnis dan Manajemen (JABM) E-Journal Widyariset JOIN (Jurnal Online Informatika) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Informatika Pertanian Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control JITK (Jurnal Ilmu Pengetahuan dan Komputer) Jurnal Informatika Universitas Pamulang Jurnal ULTIMATICS CYBERNETICS BHUMI: Jurnal Agraria dan Pertanahan Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika JURNAL METEOROLOGI DAN GEOFISIKA Building of Informatics, Technology and Science Journal of Robotics and Control (JRC) Indonesian Journal of Electrical Engineering and Computer Science Computer Science and Information Technologies Jurnal Tanah dan Iklim Widyariset Aiti: Jurnal Teknologi Informasi Jurnal Pustakawan Indonesia Makara Journal of Science Eduvest - Journal of Universal Studies J-Icon : Jurnal Komputer dan Informatika Jurnal Sistem Informasi
Claim Missing Document
Check
Articles

PERAMALAN AWAL MUSIM HUJAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION LEVENBERG-MARQUARDT Agus Buono; Alif Kurniawan; Akhmad Faqih
Seminar Nasional Aplikasi Teknologi Informasi (SNATI) 2012
Publisher : Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini difokuskan pada pemodelan Jaringan Syaraf Tiruan propagasi balik Levenberg-Marquardt untuk prediksi Awal Musim Hujan (AMH), dengan mengambil studi kasus Kabupaten Indramayu. Peubah yang dipergunakan sebagai prediktor adalah Southern Oscillation Index (SOI). Pemilihan bulan untuk data SOI berdasar nilai korelasi pada taraf nyata 5%. Sedangkan peubah respon adalah awal musim hujan satu periode ke depan yang diukur dalam dasarian (10 harian). Dari 30 tahun periode data (1978-2007), selanjutnya dilakukan pemodelan JST dengan 4 variasi jumlah hidden neuron (5, 10, 15 dan20) dan divalidasi dengan metode Leave One Out (LOO) cross validation untuk melihat skil dari model dalam melakukan prediksi. Hasil percobaan menunjukkan bahwa SOI bulan Juni, Juli dan Agustus mempunyai korelasi yang kuat dengan awal musim hujan, dengan korelasi masing-masing sebesar -0.46, -0.368, dan -0.364. Berdasar SOI pada 3 bulan tersebut dibangun model JST dengan output AMH. Skil model JST diukur menggunakan korelasi antara observasi dengan hasil prediksi. Korelasi tertinggi diperoleh dengan menggunakan hidden neuron 20, yaitu sebesar 0.99. Sedangkan untuk hidden neuron 5, 10 dan 15 masing-masing menghasilkan prediksi dengan korelasi sebesar 0.58, 0.7 dan 0.8.
PENGENALAN KADAR TOTAL PADAT TERLARUT PADA BUAH BELIMBING MANIS BERDASAR CITRA RED-GREEN-BLUE DENGAN ANALISIS KOMPONEN UTAMA SEBAGAI EKSTRAKSI CIRI DAN JARAK EUCLIDEAN SEBAGAI PENGENAL POLA Agus Buono; Irmansyah .
Jurnal Ilmu Komputer dan Informasi Vol 2, No 1 (2009): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (383.734 KB) | DOI: 10.21609/jiki.v2i1.126

Abstract

Pada paper ini, dilakukan pemilihan feature dari citra RGB (Red-Green-Blue) untuk memprediksi tingkat kemanisan buah belimbing yang dicirikan dengan kandungan TPT (Total Padat Terlarut). Dari feature terpilih, dilakukan transformasi komponen utama satu dimensi (1D-PCA) dan dua dimensi (2D-PCA) untuk mereduksi dimensi citra. Kemudian dilanjutkan dengan proses pengenalan tingkat kemanisan yang dalam paper ini dikelompokkan menjadi tiga, yaitu manis, sedang, dan asam. Nilai batas tiap kelompok didasarkan pada bentuk histogram nilai TPT. Dari 300 citra buah belimbing diperoleh hasil bahwa secara akurasi, teknik 1D-PCA maupun 2D-PCA memberikan hasil yang relatif sama. Namun dari segi kecepatan, 2D-PCA jauh lebih cepat dibanding 1D-PCA, khususnya pada bagian pembentukan sumbu. Model hubungan tingkat kemanisan sebagai fungsi dari nilai RGB memberikan tingkat determinasi terbesarnya 69.9%. Percobaan menunjukkan bahwa 1D-PCA maupun 2D-PCA mampu menerangkan sekitar 95% model hubungan tersebut yang dikembangkan pada ruang asal. Teknik PCA digabungkan dengan jarak Euclidean untuk pengenalan mampu mengenali buah kelompok manis dengan akurasi 100%. Sedangkan untuk kelompok asam dan sedang teknik yang dilakukan gagal melakukan pengenalan dengan baik
Performance Comparison Between Support Vector Regression and Artificial Neural Network for Prediction of Oil Palm Production Mustakim Mustakim; Agus Buono; Irman Hermadi
Jurnal Ilmu Komputer dan Informasi Vol 9, No 1 (2016): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (668.754 KB) | DOI: 10.21609/jiki.v9i1.287

Abstract

The largest region that produces oil palm in Indonesia has an important role in improving the welfare of society and economy. Oil palm has increased significantly in Riau Province in every period, to determine the production development for the next few years with the functions and benefits of oil palm carried prediction production results that were seen from time series data last 8 years (2005-2013). In its prediction implementation, it was done by comparing the performance of Support Vector Regression (SVR) method and Artificial Neural Network (ANN). From the experiment, SVR produced the best model compared with ANN. It is indicated by the correlation coefficient of 95% and 6% for MSE in the kernel Radial Basis Function (RBF), whereas ANN produced only 74% for R2 and 9% for MSE on the 8th experiment with hiden neuron 20 and learning rate 0,1. SVR model generates predictions for next 3 years which increased between 3% - 6% from actual data and RBF model predictions.
DIAGNOSIS GANGGUAN SISTEM URINARI PADA ANJING DAN KUCING MENGGUNAKAN VFI 5 Agus Buono; Dhany Nugraha Ramdhany; Aziz Kustiyo; Ekowati Handharyani
Jurnal Ilmu Komputer dan Informasi Vol 2, No 2 (2009): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (388.455 KB) | DOI: 10.21609/jiki.v2i2.131

Abstract

Sistem urinari hewan dapat dibagi menjadi 2 bagian yaitu sistem urinari bagian atas dan sistem urinari bagian bawah. Ginjal yang merupakan bagian dari sistem urinari memiliki 2 fungsi penting, yaitu filtrasi dan reabsorpsi. Dalam mendiagnosis penyakit yang diderita hewan pada sistem urinarinya terdapat beberapa kendala. Pada penelitian ini, dikembangkan model untuk mendiagnosis gangguan sistem urinari pada anjing dan kucing dengan menggunakan algoritma VFI 5 berdasarkan gejala klinis (terdapat 37 feature) dan pemeriksaan laboratorium (39 feature). Percobaan dilakukan baik pada feature gejala klinis dan juga pada feature pemeriksaan laboratorium. Hasil pengamatan yang dilakukan menunjukkan bahwa akurasi rata-rata sebesar 77,38% untuk percobaan dengan feature gejala klinis, dan 86,31% untuk percobaan dengan feature pemeriksaan laboratorium. Peningkatan ini mengindikasikan bahwa dalam mendiagnosis penyakit dalam sistem urinari, pemeriksaan laboratorium masih sangat dibutuhkan dalam menentukan hasil diagnosis suatu penyakit.
Support Vector Regression untuk Prediksi Produktivitas Kelapa Sawit di Provinsi Riau Mustakim Mustakim; Agus Buono; Irman Hermadi
SITEKIN: Jurnal Sains, Teknologi dan Industri Vol 12, No 2 (2015): Juni 2015
Publisher : Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/sitekin.v12i2.990

Abstract

Krisis energi yang melanda wilayah Provinsi Riau dan sekitarnya memberikan dampak penurunan nilai ekonomi masyarakat, hal tersebut disebabkan salah satunya adalah negara selalu bergantung kepada sumber energi fosil. Upaya pemerintah untuk mengatasi krisis energi telah dilakukan dengan mengganti energi fosil dengan energi alternatif terbarukan dari limbah kelapa sawit. Produksi dan produktifitas kelapa sawit di Provinsi Riau memiliki peringkat terbesar di Indonesia, hal ini menjadi gambaran akan terwujudnya energi alternatif masa depan di Riau. Penelitian ini melakukan prediksi produksi dan produktifitas untuk kedepannya dengan menggunakan metode Support Vector Regression. Dari hasil percobaan yang dilakukan, diperoleh nilai prediksi untuk kedepannya mengalami penurunan hingga 52% dan hanya mengalami kenaikan 5 dari 74 lokasi sebesar 8% . Kernel SVR terbaik dari kombinasi percobaan ini adalah Radial Basis Function dengan koefisien determinasi (R2) sebesar 95% dan nilai error galat (MSE) sebesar 6% terdapat pada fold 1 dengan rentang γ=20 dan C 23.
SPEAKER IDENTIFICATION USING HYBRID MODEL OF PROBABILISTIC NEURAL NETWORK AND FUZZY C-MEANS Vicky Zilvan; Agus Buono; Sri Nurdiati
Widyariset Vol 16, No 2 (2013): Widyariset
Publisher : Pusbindiklat - LIPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (182.92 KB) | DOI: 10.14203/widyariset.16.2.2013.341-348

Abstract

A hybrid model of Probabilistic Neural Network and Fuzzy C-Means has been developed. The model has been applied using Mel Frequency Cepstrum Coefficients (MFCC) as feature extraction for identification. In addition to the natural voice, the effect of noise has also been taken into account. It has been shown that the model has good accuracy at 96% for voice without noise, 85.5% for voice with noise at the level of signal to noise ratio 30, and 60% for voice with noise at the level of signal to noise ratio 20. It has also been concluded that the clustering procedure using Fuzzy C-Means could improve the accuracy up to 96% for large number of training data.
Pengenalan Suara Paru-Paru dengan MFCC sebagai Ekstraksi Ciri dan Backpropagation sebagai Classifier Fadhilah Syafria; Agus Buono; Bib Paruhum Silalahi
Jurnal Ilmu Komputer & Agri-Informatika Vol. 3 No. 1 (2014)
Publisher : Departemen Ilmu Komputer - IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (568.648 KB) | DOI: 10.29244/jika.3.1.27-36

Abstract

Paru-paru merupakan organ vital manusia yang berperan dalam proses pernapasan. Jika paru-paru mengalami gangguan maka sistem pernapasan manusia juga akan mengalami gangguan yang bisa menyebabkan kecacatan bahkan kematian. Untuk mengevaluasi keadaan paru-paru dapat dilakukan dengan mendengarkan suara pernapasan dengan menggunakan stateskop. Teknik ini dikenal dengan teknik auskultasi. Teknik ini paling sering digunakan namun memiliki beberapa kelemahan yaitu suara paru-paru berada pada frekuensu rendah, masalah kebisingan lingkungan, kepekaan telinga, hasil analisa yang subjektif, dan pola suara yang hampir mirip. Karena faktor-faktor di atas kesalahan diagnosa bisa terjadi jika proses auskultasi tidak dilakukan dengan benar. Dalam penelitian ini, akan dibuat pengenalan suara paru-paru normal dan abnormal menggunakan Mel Frequency Cepstrum koefisien (MFCC) sebagai ekstraksi ciri dan Backpropagation sebagai classifier. Suara paru-paru akan dihitung Coeffisient Ceptral nya sebagai penciri dari masing-masing suara untuk selanjutnya dikenali dengan menggunakan Backpropagation. Metode yang diusulkan memberikan akurasi 93.97% untuk data latih dan 92.66% untuk data uji.Kata kunci: Backpropagation, MFCC, pengenalan suara paru-paru
Klasifikasi Metagenom dengan Metode Naïve Bayes Classifier Dian Kartika Utami; Wisnu Ananta Kusuma; Agus Buono
Jurnal Ilmu Komputer & Agri-Informatika Vol. 3 No. 1 (2014)
Publisher : Departemen Ilmu Komputer - IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1294.449 KB) | DOI: 10.29244/jika.3.1.9-17

Abstract

Studi metagenom merupakan langkah penting pada pengelompokan taksonomi. Pengelompokan pada metagenom dapat dilakukan dengan menggunakan metode binning. Binning diperlukan untuk mengelompokkan contigs yang dimiliki oleh masing-masing kelompok spesies filogenetik. Pada penelitian ini, binning dilakukan dengan menggunakan pendekatan komposisi berdasarkan supervised learning (pembelajaran dengan contoh). Metode supervised learning yang digunakan yaitu Naïve Bayes Classifier. Adapun metode yang digunakan untuk ekstraksi ciri adalah dengan melakukan perhitungan frekuensi k-mer. Klasifikasi pada metagenom dilakukan berdasarkan tingkat takson genus. Dari proses klasifikasi yang dilakukan, akurasi yang diperoleh dengan menggunakan fragmen pendek (400 bp) adalah 49.34 % untuk ekstraksi ciri 3-mer dan 53.95 % untuk ekstrasi ciri 4-mer. Sementara itu, untuk fragmen panjang (10 kbp), akurasi mengalami peningkatan yaitu 82.23 % untuk ekstraksi ciri 3-mer dan 85.89 % untuk esktraski ciri 4-mer. Dari hasil tersebut dapat disimpulkan bahwa akurasi semakin tinggi seiring dengan semakin panjangnya ukuran fragmen. Selain itu, penelitian ini juga menyimpulkan bahwa metode ekstrasi ciri yang memberikan hasil paling maksimal adalah dengan menggunakan ekstraksi ciri 4-mer.Kata Kunci: metagenom, k-mer, Naïve Bayes Classifier, binning, klasifikasi
Pemodelan Dimensi Fraktal Multiskala untuk Mengenali Bentuk Daun Aziz Rahmad; Yeni Herdiyeni; Agus Buono; Stephane Douady
Jurnal Ilmu Komputer & Agri-Informatika Vol. 4 No. 1 (2015)
Publisher : Departemen Ilmu Komputer - IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (779.82 KB) | DOI: 10.29244/jika.4.1.35-41

Abstract

Penelitian ini membangun model untuk membedakan bentuk daun menggunakan dimensi fraktal multiskala. Identifikasi tumbuhan obat sangat penting mengingat keanekaragaman hayati di Indonesia dan peran pentingnya di Indonesia. Identifikasi tanaman dapat dilakukan menggunakan analisis bentuk dengan daun sebagai cirinya. Dimensi fraktal multiskala adalah salah satu metode analisis bentuk yang menganalisis bentuk melalui kompleksitasnya. Empat tipe bentuk daun dari spesies berbeda dimodelkan dalam penelitian ini. Analisis multiskala mampu memberikan informasi tambahan mengenai alur perubahan luas bidang dilasi, namun tidak mencirikan bentuk daun yang diuji dalam penelitian ini. Kata kunci: bentuk daun, dimensi fraktal multiskala, tanaman obat.
Pendeteksian Kerapatan dan Jenis Gulma dengan Metode Bayes dan Analisis Dimensi Fraktal untuk Pengendalian Gulma Secara Selektif Mohamad Solahudin; Kudang Boro Seminar; I Wayan Astika; Agus Buono
Jurnal Keteknikan Pertanian Vol. 24 No. 2 (2010): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (883.723 KB) | DOI: 10.19028/jtep.024.2.%p

Abstract

Abstract Destructive impacts of herbicide usage on environment and water contamination have led to many researches oriented toward finding solutions for their accurate use. If density and weeds species could be correctly detected, patch spraying or spot spraying can effectively reduce herbicide usage. A precision automated machine vision for weed control could also reduce the usage of chemicals. Machine vision is a useful method for segmentation of different objects in agricultural applications, especially pattern recognition methods. Many indices have been investigated by researchers to perform weed segmentation based on color information of the images.  But there is no research that aims to identify weed diversity and its influence on the consumption of herbicides. The purpose of this research is to build a system that can recognize weeds and plants. In this study the relation between three main components (red, green and blue) of the images and color feature extraction (Hue, Saturation, Intensity) used to define weeds and plants density. Fractal dimension used as the methode to define  shape features to distinguish weeds and plants. Weeds and plants were segmented from background by obtaining H value and its shape was obtained by fractal dimension value. The results show fractal dimension value for weeds and plants has specific values. Corn plants have fractal dimension values in the range 1.148 to 1.268, peanut plants have fractal dimension values in the range 1.511 to 1.629, while the weeds have Fractal dimension values in the range 1.325 to 1.497. Keywords: image processing, machine vision, weed control, fractal dimension Diterima: 26 Juli 2010; Disetujui: 4 Oktober 2010
Co-Authors Ade Fruandta Adi Rakhman Aditya Cipta Raharja Agung Prajuhana Putra Akhmad Faqih Alif Kurniawan Alvin Fatikhunnada Anang Kurnia Angga Wahyu Pratama Aries Maesya Arini Aha Pekuwali Arini Pekuwali Astuti, Indah Puji Atik Pawestri Sulistyo Aziz Kustiyo Aziz Rahmad Bahukeling, Trukan Sri Benyamin Kusumoputro Bib Paruhum Silalahi Budi Nugroho Cece Sumantri DEWI APRI ASTUTI Dhany Nugraha Ramdhany Dian Kartika Utami Edi Santosa Ekowati Handharyani Elisabeth Sri Hendrastuti Endang Purnama Giri Erliza Hambali Erliza Noor Ernan Rustiadi Fadhilah Syafria Fadhilah Syafria Fajar Delli Wihartiko Fildza Novadiwanti Firdaus, Husni Firdaus, Nova Fredicia Fredicia Galih Kurniawan Sidik Galih Kurniawan Sidik Galih Kurniawan Sidik Gendut Suprayitno Gita Adhani GUNARSO GUNARSO Hardhienata, Medria Kusuma Dewi Harry Dhika, Harry Hastuadi Harsa Herianto Herianto Hidayat Hidayat Hidayat I Wayan Astika Ibrahim, Firmansyah Iis Rodiah Imam Suroso, Arif Imas Sukaesih Sitanggang Indah Prasasti Indah Puji Astuti Indra Jaya Inggih Permana Irman Hermadi Irmansyah . Irsal Las Irsal Las ISKANDAR ZULKARNAEN SIREGAR Kana Saputra S Karlisa Priandana Kikin H Mutaqin Kudang Boro Seminar Laila Sari Lubis Laila Sari Lubis Lailan Syaufina Lidya Ningsih Liyantono . M. Cholid Mawardi M. Mukhlis Marcelita, Faldiena Medria Kusuma Dewi Hardhienata Mindara, Gema Parasti Mohamad Solahudin Muhammad Ardiansyah Muhammad Rafi Muttaqin Mushthofa Mustakim Mustakim Mustakim Mustakim Muttaqin, Muhammad Rafi Niswati, Za'imatun Noviyanti, Inna Nurhayati, Yosi Popong Nurhayati Pratistya, Sayu Desty Puspita Kartika Sari Puspita Kartika Sari Putri Yuli Utami Raehan, Siti Raharja, Aditya Cipta Rahmat Hidayat Rizal Syarief Rizaldi Boer Rizki, Arviani RR. Ella Evrita Hestiandari Santo, Deni Sanusi Sanusi Sari Agustini Hafman Savitri, Siska Shelvie Nidya Neyman Sholihah, Walidatush Sidik, Galih Kurniawan Siregar, Ardinsyah Sitanggang, Imas S. Siti Kania Kushadiani Sony Hartono Wijaya Sri Dianing Asri Sri Hendrastuti, Elisabeth Sri Nurdiati Sri Wahjuni Stephane Douady Suharno Suharno Suharno Sumanto, Sumanto Syeiva Nurul Desylvia Taufik Djatna Thoyyibah Tanjung Toto Haryanto Uliniansyah, Mohammad Teduh Vicky Zilvan Wisnu Ananta Kusuma Wisnu Jatmiko Woro Estiningtyas Woro Estiningtyas Woro Estiningtyas Yan Mitha Djaksana Yandra Arkeman Yenni Vetrita Yoanda, Sely