This Author published in this journals
All Journal Jurnal Media Infotama Jurnal Teknologi JOURNAL OF APPLIED INFORMATICS AND COMPUTING Jurnal Ilmiah Sinus Jurnal Informatika Global Jurnal Kridatama Sains dan Teknologi Building of Informatics, Technology and Science Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Jurnal Teknologi Dan Sistem Informasi Bisnis REMIK : Riset dan E-Jurnal Manajemen Informatika Komputer JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) JUKI : Jurnal Komputer dan Informatika Infotech: Journal of Technology Information Journal of Computer Networks, Architecture and High Performance Computing Jurnal Restikom : Riset Teknik Informatika dan Komputer JOURNAL SCIENTIFIC OF MANDALIKA (JSM) Jurnal Ilmiah Wahana Pendidikan Jurnal Pengabdian kepada Masyarakat Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer Jurnal Media Informatika Bulletin of Information Technology (BIT) International Journal Software Engineering and Computer Science (IJSECS) Jurnal Ilmiah SIGMA: Informatics Engineering Journal of UPB Jurnal Informasi Sains dan Teknologi (ISAINTEK) Jurnal Ilmu Komunikasi Dan Media Jurnal Informatika Teknologi dan Sains (Jinteks) Formosa Journal of Computer and Information Science Jurnal Teknik Mesin, Industri, Elektro dan Informatika Jurnal Penelitian Rumpun Ilmu Teknik SABAJAYA Jurnal Pengabdian Kepada Masyarakat Jurnal Lentera Pengabdian Kohesi: Jurnal Sains dan Teknologi Jurnal Pelita Pengabdian SAINTEK Dedikasi : Jurnal Pengabdian Lentera Cahaya Pengabdian
Claim Missing Document
Check
Articles

Optimasi Prediksi Diabetes Mellitus Menggunakan Komparasi Random Forest dan SVM dengan Analisis Pemilihan Fitur Berbasis SHAP Aswan Supriyadi Sunge; Dendy K. Pramudito; Abdul Halim Anshor; Edy Widodo
Prosiding Sains dan Teknologi Vol. 4 No. 1 (2025): Seminar Nasional Sains dan Teknologi (SAINTEK) ke 4 - Februari 2025
Publisher : DPPM Universitas Pelita Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Diabetes Mellitus merupakan masalah kesehatan di dunia yang sangat signifikan maka dari itu dibutuhkan prediksi dini dan akurat. Penelitian ini bertujuan untuk mengoptimalkan prediksi dengan membandingkan model Machine Learning (ML) dengan Random Forest dan Support Vector Machine, yang ditingkatkan dengan analisis SHAP (SHapley Additive exPlanations) untuk mencari fitur tertinggi atau berpengaruh. Penelitian ini menggunakan dataset yang terdiri dari 1000 data pasien dengan 14 fitur, dan 1 kelas. Preprocessing melibatkan pembersihan data dan duplicate, dilanjutkan dengan testing dan training data, dan hasil pengujian dengan model Random Forest mendapatkan akurasi 99%, sementara SVM mencapai 86%, lalu pengujian analisis SHAP mengungkapkan bahwa Age, Urea dan Kreatinin adalah fitur yang paling berpengaruh dari fitur yang lainnya. Hasil analisis perbandingan menunjukkan bahwa mengungguli dalam hal akurasi prediksi secara keseluruhan, dan ini sangat berkontribusi pada peningkatan metode prediksi yang optimal dan sebagai parameter klinis utama untuk diagnosis.
Implementation of Data Mining for Speech Recognition Classification of Sundanese Dialect Using KNN Method with MFCC Feature Extraction Shandy, Ery; Anshor, Abdul Halim; Ardiatma, Dodit
Journal of Computer Networks, Architecture and High Performance Computing Vol. 6 No. 3 (2024): Articles Research Volume 6 Issue 3, July 2024
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v6i3.4226

Abstract

The importance of preservation and development of speech recognition technology for regional languages such as Sundanese, which have unique phonetic characteristics. Regional language speech recognition can assist in the development of local, educational, and cultural preservation applications to implement and evaluate the effectiveness of the combination of MFCC and KNN methods in classifying Sundanese dialect speech recognition. Methods used include trait extraction with MFCC, which converts voice data into numerical representations based on frequency characteristics, and classification with KNN, which groups data based on similarity to train data. The Dataset used consisted of speech recordings of Western and Southern Sundanese dialects. The results showed that the k-Nearest Neighbors (KNN) method can classify Sundanese dialect speech recognition with an accuracy of 80.00%, showing good ability in distinguishing "Western" and "southern" dialects. Mel-Frequency Cepstral Coefficients (MFCC) proved to be very effective in extracting sound features, helping KNN achieve low error rates. The combination of MFCC and KNN proved effective for speech recognition classification of Sundanese dialects, providing satisfactory results with high accuracy.
Sistem Informasi Inventory Berbasis Website Menggunakan Metode Waterfall Harits, Dalhats Abiyyu Idzal; Anshor, Abdul Halim; Tedi, Nanang
Journal of Information System Research (JOSH) Vol 5 No 4 (2024): Juli 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v5i4.5548

Abstract

As information technology develops today, the use of computers has become a very good alternative way for information needs and is the right solution for managing data compared to information carried out manually. However, Cahaya Bangun Utama Building Store still uses manual recording of goods, which results in problems such as recording warehouse stock which still uses traditional methods such as recording the incoming and outgoing goods using a notebook, making it easy for errors to occur when managing a building shop. The method used in this research is the Waterfall method, and will be built using the PHP programming language, the XAMPP framework, and a MySQL database. The aim of this research is to create a website-based inventory information system that will help building stores and increase the efficiency of recording warehouse stock. The results of this research show that Cahaya Bangun Utama Building Store can manage warehouse stock more effectively and efficiently.
Pelatihan Pengelolaan Sdm Untuk Meningkatkan Kualitas Umkm Dalam Produktivitas Penjualan Rismawati; Purwanti; Anshor, Abdul Halim; Maulana, Donny; Huda, Miftahul
SABAJAYA Jurnal Pengabdian Kepada Masyarakat Vol. 3 No. 01 (2025): SABAJAYA : Jurnal Pengabdian Kepada Masyarakat
Publisher : SABA JAYA PUBLISHER

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59561/sabajaya.v3i01.541

Abstract

Pelatihan "Pengelolaan SDM untuk Meningkatkan Kualitas UMKM dalam Produktivitas Penjualan" berhasil menunjukkan bahwa peningkatan pengelolaan Sumber Daya Manusia (SDM) memiliki peran krusial dalam memperkuat kinerja dan produktivitas UMKM di Bandung Barat. Melalui pelatihan ini, peserta memperoleh pemahaman strategis dan keterampilan praktis dalam aspek rekrutmen, pengembangan karyawan, motivasi, dan penilaian kinerja. Hasil pelatihan menunjukkan peningkatan signifikan dalam pengelolaan SDM, yang mendukung pertumbuhan usaha dan meningkatkan daya saing UMKM. Pendampingan pasca-pelatihan menjadi elemen vital untuk penerapan keterampilan yang diperoleh secara efektif dan berkelanjutan. Diharapkan, peserta dapat menyebarluaskan pengetahuan yang didapat kepada UMKM lain, sehingga dampak positif dari pelatihan ini dapat meluas dan berkontribusi pada pengembangan ekonomi daerah
Program Donation Lecture untuk Meningkatkan Sukses Mahasiswa Berkarir di Berbagai Sektor Industri Mawabagja, Dico; Anshor, Abdul Halim; Ridwan, Muhamad; Kurniawan, Adi; Kinasih, Sekar; Darmawan, Diki
Cahaya Pengabdian Vol. 1 No. 1 (2024): Juni 2024
Publisher : Apik Cahaya Ilmu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61971/cp.v1i1.53

Abstract

Dalam menghadapi tantangan pasar kerja yang semakin membutuhkan tenaga kerja terampil, PT. NOK Indonesia bersama AOTS dan UPB meluncurkan program Donation Lecture. Program ini bertujuan untuk mengintegrasikan teori dan praktek industri melalui kurikulum yang dibangun berdasarkan kebutuhan industri terkini. Metodologi yang diterapkan meliputi pengajaran langsung oleh praktisi industri dan serangkaian kegiatan seperti kunjungan industri, workshop QC Seven Tools, serta penerapan IoT dalam proses industri. Hasil program menunjukkan peningkatan kesiapan dan keterampilan peserta, mempersiapkan mereka dengan kompetensi yang relevan untuk pasar kerja. Kesimpulannya, program Donation Lecture berhasil mengembangkan kurikulum yang efektif dalam mengintegrasikan teori dan aplikasi praktis, meningkatkan kualitas lulusan yang siap bersaing di industri. Program ini menawarkan model kolaboratif yang dapat diterapkan lebih luas untuk meningkatkan sinergi pendidikan dan kebutuhan industri.
Pendampingan Literasi Digital Berkelanjutan untuk Guru dan Siswa Melalui Perpustakaan Digital di SDIT ANNIDA Anshor, Abdul Halim; Rezeki, Fitri; Rismawati; Erdi; Fauzi, Ahmad
Jurnal Pelita Pengabdian Vol. 3 No. 2 (2025): Juli 2025
Publisher : DPPM Universitas Pelita Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Improving digital literacy skills plays a crucial role in equipping educators and students to adapt to the rapidly advancing developments in information technology. However, many educational institutions still face obstacles such as limited resources, inability to use digital technology, and lack of guidance. The purpose of this community service program is to introduce and implement a digital library as a means to improve sustainable digital literacy for teachers and students at SDIT ANNIDA. This will involve initial observation, technical training, mentoring in the use of a web-based digital library system, and a participant evaluation of the program's benefits. The results of the program indicate that teachers and students have improved skills in accessing and utilizing digital information. Furthermore, the digital library system has stimulated student interest in e-reading and improved use of digital collections. This program can be implemented in other schools with similar conditions. However, several challenges must be overcome, such as adapting to technology and limited training time. To support digital transformation in elementary schools, a contextual and ongoing mentoring approach has proven useful.
Implementasi Metode Decision Tree pada Sistem Prediksi Status Kualitas Produk Minuman A Anshor, Abdul Halim; Zy, Ahmad Turmudi
Jurnal Ilmiah Informatika Global Vol. 15 No. 1: April 2024
Publisher : UNIVERSITAS INDO GLOBAL MANDIRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36982/jiig.v15i1.3778

Abstract

The quality of a beverage product is one of the important items that beverage product entrepreneurs must pay attention to. Good quality beverage products will have an impact on consumers' health. UMKM Buah Sabar is one of the MSMEs located in Bekasi district which produces beverage products A. In the distribution of these beverage products, MSME workers in the delivery section have conditions where the product is out of stock or left over. The reseller must be able to understand whether the status of the remaining product is still of good quality or has been damaged. This is very important to pay attention to because the cooling conditions of each reseller have varying degrees of cold, sometimes also influenced by blackouts and unstable electricity voltage. This condition can cause the quality of product A to decrease. The large number of resellers and products sent will make it difficult for MSME workers to detect the quality of beverage product A. To overcome this problem the researchers found a solution that requires a machine learning method to predict the quality status of product A. In this research, the researchers used the decision tree method to predict the quality status of the product Drink A. The data used are 500 samples of drink product A in the production period from November 2023 to February 2024. The parameters used include temperature, color, taste, aroma, and quality status class of drink product A. The results of this research will show the presentation The accuracy value for the quality of product A is 99.59%, this shows that the decision tree algorithm has very good performance in the process of classifying the quality of beverage product A.
Co-Authors Abdul Ghofar Abiyyu, Muhammad Dzaki Achmad, Ivan Faturrochman Adi Kurniawan Afriantoro, Irfan Agung Nugroho Aguswin, Ahmad ajizah, imah rotul Akromusyuhada, Akhmad Al Godzali, Galva Albedri, Muhammad Amali Amali Amartha, Alif Nur Fathlii Anas, Muhamad Abdul Anggara, Bastian Anggraeni , Tatia Deswita Ansyah, Ery Argiansah P, Rieval Arie Miftah Budiman Asep Muhidin Assidiki, Hasbi Aswan Supriyadi Sunge Athallah , Rafif Isdarufa Ayubi, Muhammad Din Al Badrul Munir, Badrul Bina, Sabina Oktaviani Hermilia Butsianto, Sufajar Clarita, Anggita Risqi Nur Danuyasa, Abiyanfaras Darmawan, Diki Dendy K. Pramudito Dita , Silvi Fara Dita, Silvi Fara Djawas, Fathia Wardah S. Dodit Ardiatma Edora Edora Edy Widodo Edy Widodo Erdi Erianto, Erick Erikasari, Vivie Zuliani Fadhillah, Faizah Via Fadillah, Muhammad Zidan Farrasanto, Akram Fatchan, Muhammad Fauzi Ahmad Muda Febri Tri Arie Sakti Ferdiansyah, Febby Fermana, Yudi Fernanda, Arif Fiqih Alfiansyah Zahari Ghufron Malik Harits, Dalhats Abiyyu Idzal Hary Alfarizi Hasbiallah, Muhammad Herisaputra, Rizky Igel Huda, Miftakul Irawan, Teddy Kholid Wahyudi Kinasih, Sekar Latifah Nurhasanah, Reka Hani Lubis, Birrham Efendi Maharani, Tyanshi Firli Maulana, Donny Maulana, Fariz Mawabagja, Dico Miftahul Huda Mochammad Imron Awalludin Moh. Restu Nur Rizki Muhamad Fatchan Muhamad Ridwan Muhammad Abdul Rahman Wahid muhidin, asep Mujizat, Hafidza Dafariz Mulqiya, Wafha Zahra Najamuddin Dwi Miharja, Muhammad Novianti, Annisa Dwi Novitasari, Aas Nugraha, Rhendy Diki Nugroho, Azwar Anas Agung Nugroho, Irvan Nuraini, Fadilah Nurcahyo, Danang Nurcholilah Nurcholilah Nurhadi Surojudin Nurhaliza, Zahra Oktavianti, Risma Nadia Perdana, Maulana Zidan Pertiwi Dwi Ningsih Prasetya, Ferdyana Eka Pratama, Hendri Purwanti purwanti, purwanti PUTRI, TIARA Raehan, Muhamad Rafi Suswidia Rafiandi, Junian Rahardjo , Sugeng Budi Rahardjo, Sugeng Budi Raharjo, sugeng budi Rahayu, Nia Dwi Rahma, Syifa Aurellia Rahman, Farjul Ramadhani, Faiz Dzaki Respiar, Boby Retno Purwani Setyaningrum Ridwan Ahri Rifqi, Ifan Aly Rismawati Sadewo, Riski Probo Safrudin , Nurkholik Safrudin, Nurkholik Saputra, Wisnu Ikhwansyah Sarikun, Ahmad Nurdien Shandy, Ery Sianturi, Feibert Sihombing, Johanes Mula Febrian Sugeng Budi Rahardjo Suherman Suherman Sulaeman, Asep Arwan Susilo, Hendrik Ardhi Syahrul Gunawan Taryadi Taryadi Tedi, Nanang Tri Ngudi Wiyatno umah, Nadiatul Valerian, Kumara Davin Wahyu Hadikristanto Wangsadanureja, Miftah Wibowo, Mohamad Hegar Sukmana Wilianto Wilianto Windi Windi, Windi Wiyanto Wiyanto Yudanto , Faisal Arya Zakaria, Nur Fajar Zulaeha Zulaeha Zy, Ahmad Turmudi