p-Index From 2021 - 2026
9.936
P-Index
This Author published in this journals
All Journal Techno.Com: Jurnal Teknologi Informasi Prosiding Seminar Nasional Sains Dan Teknologi Fakultas Teknik Jurnal Teknik Elektro Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Sistem dan Informatika InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Sistemasi: Jurnal Sistem Informasi Jurnal Teknologi dan Sistem Komputer JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer JURNAL MANAJEMEN BISNIS Jurnal Literasiologi Jurnal Tekno Kompak Jurnal Ilmiah Kebidanan Indonesia (Indonesian Midwifery Scientific Journal) Jurnal Abdidas Jurnal SASAK : Desain Visual dan Komunikasi Jurnal Bumigora Information Technology (BITe) Jurnal Pengabdian UNDIKMA Journal of Electrical Engineering and Computer (JEECOM) Lumbung Inovasi: Jurnal Pengabdian Kepada Masyarakat Jurnal Silva Samalas: Journal of Forestry and Plant Science Jurnal Elkasista ADMA: Jurnal Pengabdian dan Pemberdayaan Masyarakat Jurnal Inovasi, Evaluasi dan Pengembangan Pembelajaran (JIEPP) Jurnal PRIMED:Primary Education Journal atau Jurnal Ke-SD An Journal of Engineering, Technology and Computing (JETCom) Jurnal: International Journal of Engineering and Computer Science Applications (IJECSA) Insand Comtech : Information Science and Computer Technology Journal Valid Jurnal Pengabdian Journal of Economics and Management Scienties Prosiding Seminar Nasional CORISINDO Media Pendidikan Matematika
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Improvement Performance of the Random Forest Method on Unbalanced Diabetes Data Classification Using Smote-Tomek Link Hairani Hairani; Anthony Anggrawan; Dadang Priyanto
JOIV : International Journal on Informatics Visualization Vol 7, No 1 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.1.1069

Abstract

Most of the health data contained unbalanced data that affected the performance of the classification method. Unbalanced data causes the classification method to classify the majority data more and ignore the minority class. One of the health data that has unbalanced data is Pima Indian Diabetes. Diabetes is a deadly disease caused by the body's inability to produce enough insulin. Complications of diabetes can cause heart attacks and strokes. Early diagnosis of diabetes is needed to minimize the occurrence of more severe complications. In the diabetes dataset used, there is an imbalanced data between positive and negative diabetes classes. Diabetes negative class data (500 data) is more than diabetes positive class (268), so it can affect the performance of the classification method. Therefore, this study aims to apply the Smote-Tomeklink and Random Forest methods in the classification of diabetes. The research methodology used is the collection of diabetes data obtained from Kaggle, as many as 768 data with eight input attributes and 1 output attribute as a class, pre-processing data is used to balance the dataset with Smote-Tomeklink, classification using the random forest method, and performance evaluation based on accuracy, sensitivity, precision, and F1-score. Based on the tests conducted by dividing data using 10-fold cross-validation, the Random Forest algorithm with Smote-TomekLink gets the highest accuracy, sensitivity, precision, and F1-score compared to Random Forest with Smote. The Random Forest algorithm with Smote-Tomeklink has 86.4% accuracy, 88.2% sensitivity, 82.3% precision, and 85.1% F1-score. Thus, using Smote-Tomeklink can improve the performance of the random forest method based on accuracy, sensitivity, precision, and F1-score.
Addressing Class Imbalance of Health Data: A Systematic Literature Review on Modified Synthetic Minority Oversampling Technique (SMOTE) Strategies Hairani, Hairani; Widiyaningtyas, Triyanna; Dwi Prasetya, Didik
JOIV : International Journal on Informatics Visualization Vol 8, No 3 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3.2283

Abstract

The Synthetic Minority Oversampling Technique (SMOTE) method is the baseline for solving unbalanced data problems. The working concept of the SMOTE method is to generate new synthetic data patterns by performing linear interpolation between minority class samples based on k-nearest neighbors. However, the SMOTE method has weaknesses, namely the problem of overgeneralization due to excessive sampling of sample noise and increased overlapping between classes in the decision boundary area, which has the potential for noise data. Based on the weaknesses of the Smote method, the purpose of this research is to conduct a systematic literature review on the Smote method modification approach in solving unbalanced data. This systematic literature review method comprises keyword identification, article search process, determination of selection criteria, and selection results based on criteria. The results of this study showed that the SMOTE modification approach was based on filtering, clustering, and distance modification to reduce the resulting noise data. The filtering approach removed the noise data before SMOTE, positively impacting resolving unbalanced data. Meanwhile, the use of a clustering approach in SMOTE can minimize the overlapping artificial minority data that has noise potential. The most used datasets are Pima 60% and Haberman 50%. The most used performance evaluation on unbalanced data is f1-measure 57%, accuracy 55%, recall 43%, and AUC 27%. The implication of the results of this literature review is to provide opportunities for further research in modifying SMOTE in addressing health data imbalances, especially handling noise and overlapping data. The thoroughness of our literature review should instill confidence in the research community.
Co-Authors Abdillah, Mokhammad Nurkholis Abdurraghib Segaf Suweleh Abdurraghib Segaf Suweleh Abu Tholib Adam, M. Awaludin Afrig Aminuddin Ahmad Ahmad Ahmad Fathoni Ahmad Zuli Amrullah Amelia, Bengi Amin, Farda Milanda Andi Sofyan Anas Andi, Moh syaiful Anggarawan, Anthony Anthony Anggrawan Arfa, Muhammad Ashadi, Diki Astuti, Ni Luh Budi Ayu Dasriani, Ni Gusti Candra, M. Ade Christine Eirene Christopher Michael Lauw Dadang Priyanto Dedi Aprianto Dedy Febry Rachman Dedy Febry Rahman Deny Jollyta Dian Syafitri Didik Dwi Prasetya Diki Ashadi Dirgantara, Bhintang Donny Kurniawan Dyah Susilowati Dyah Susilowaty Edddy, Syaiful Eka Setiawan, Rian Putra Fahry, Fahry Fatimatuzzahra Fatimatuzzahra Fitra Rizki Ramdhani Gibran Satya Nugraha Gibran Satya Nugraha Gumangsari, Ni Made Gita Gustiya, Sherly Dwi Guterres, Juvinal Ximenes Hadi, M Fawazi Hammad, Rifqi Hartono Wijaya Haryono Haryono Hasbullah Hasbullah Heru Kurnianto Tjahjono Hery Widijanto Hidayati, Diana Huda, Dias Nabila I Gusti Agung Ayu Hari Triandini I Nyoman Switrayana Ida Putu Andika Ifnaldi, Ifnaldi Ilham Saifuddin Indah Puji Lestari Indradewa, Rhian Isviyanti, Isviyanti Janhasmadja, Mengas Jauhari, M. Thonthowi Jupriadi, Jupriadi Juvinal Ximenes Guterres Juvinal Ximenes Guterres Juvinal Ximenes Guterres Kandisa, Amelia Kasiyanto Kasiyanto, Kasiyanto Khairan marzuki Khasnur Hidjah Khurniawan Eko Saputro Kurniadin Abd Latif Kurniawan Kurniawan Lalu Ganda Rady Putra Lilik Nurhayati lnnuddin, Muhammad M. Ade Candra M. Rasyid Ridho Maariful Huda, Muhammad Malika, Riwayati Mardedi, Lalu Zazuli Azhar Mardedi, Lalu Zazuli Azhar Mayadi Mayadi Mayadi Mayadi Mayadi, Mayadi Mayasari, Astri Michael Lauw, Christopher Miftahul Madani Muhamad Azwar Muhamad Azwar, Muhamad Muhammad Arfa Muhammad Innuddin Muhammad Maariful Huda Muhammad Ridho Akbar Muhammad Ridho Hansyah muhammad Syahbudi, muhammad Muhammad Zulfikri Muhammad Zulfikri Muhammad Zulkarnaen Haris Mujahid Mujahid Neny Sulistianingsih Noor Akhmad Setiawan Nurhayati, Lilik Nurul Azmi Nurvianti, Nurvianti Nuzululnisa, Bq Nadila Pahrul Irfan Putu Tisna Putra Qososyi, Sayidina Ahmadal Rahmawati, Lela Ramadhanti Ramadhanti Ramadhanti, Ramadhanti Rifqi Hammad Riosatria, Riosatria Riwayati Malika RR. Ella Evrita Hestiandari Saifuddin Zuhri Saifuddin, Ilham Samsul Hadi Santoso, Heroe Shudiq, Wali Ja'far Soepriyanto, Harry Sofiansyah Fadli Sri Winarni Sofya Sri Winarni Sofya Sudi Prayitno Sukron, Moh Sutarman Sutarman Syahrir, Moch. tadianta m., Winardi aries Teguh Bharata Adji Tri Widayatsih, Tri Triwijoyo, Bambang Krismono Triyanna Widiyaningtyas Umi Hanifah Vidiasari, Herlita Vidiasari, Viviana Herlita Wahyuningsih, Rr. Sri Handari Widiatmoko, Dekki Winarni Sofya, Sri Wira Hendri Wiyanto, Suko Ximenes Guterres, Juvinal Yuri Ariyanto Zilullah Nazir Hadi