p-Index From 2021 - 2026
8.558
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Robotics and Automation (IJRA) IAES International Journal of Artificial Intelligence (IJ-AI) Bulletin of Electrical Engineering and Informatics Jurnal Informatika Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Journal of ICT Research and Applications JUITA : Jurnal Informatika MUSTEK ANIM HA Scientific Journal of Informatics JOIV : International Journal on Informatics Visualization Informatika Mulawarman: Jurnal Ilmiah Ilmu Komputer Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) SISFOTENIKA Wikrama Parahita : Jurnal Pengabdian Masyarakat IT JOURNAL RESEARCH AND DEVELOPMENT JURNAL REKAYASA TEKNOLOGI INFORMASI SINTECH (Science and Information Technology) Journal JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI METHODIKA: Jurnal Teknik Informatika dan Sistem Informasi MIND (Multimedia Artificial Intelligent Networking Database) Journal KOMPUTIKA - Jurnal Sistem Komputer TELKA - Telekomunikasi, Elektronika, Komputasi dan Kontrol Building of Informatics, Technology and Science JISKa (Jurnal Informatika Sunan Kalijaga) Jurnal Informatika dan Rekayasa Elektronik Journal of Innovation Information Technology and Application (JINITA) Infotek : Jurnal Informatika dan Teknologi SKANIKA: Sistem Komputer dan Teknik Informatika Innovation in Research of Informatics (INNOVATICS) Jurnal Teknik Informatika (JUTIF) Jurnal PTI (Jurnal Pendidikan Teknologi Informasi) Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer) JUSTIN (Jurnal Sistem dan Teknologi Informasi) Transformasi PROSISKO : Jurnal Pengembangan Riset dan observasi Rekayasa Sistem Komputer JOMPA ABDI: Jurnal Pengabdian Masyarakat Jurnal Pengabdian Masyarakat Intimas (Jurnal INTIMAS): Inovasi Teknologi Informasi Dan Komputer Untuk Masyarakat Data Sciences Indonesia (DSI) Journal Of Artificial Intelligence And Software Engineering Jurnal INFOTEL Journal of Computer Science and Information Technology Inovasi Teknologi Masyarakat Jurnal Pengabdian Siliwangi
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Betel leaf classification using color-texture features and machine learning approach Novianti Puspitasari; Anindita Septiarini; Ummul Hairah; Andi Tejawati; Heni Sulastri
Bulletin of Electrical Engineering and Informatics Vol 12, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i5.5101

Abstract

The existence of machine learning has been exploited to solve difficulties in various fields, including the classification of leaf species in agriculture. Betel leaf is one of the plants that provide health advantages. The objective of using a machine learning approach is to classify the betel leaf species. This study involved several processes: image acquisition, region of interest (ROI) detection, pre-processing, feature extraction, and classification. The feature extraction used the combination features of color and texture. Furthermore, the classification applied four classifiers, including artificial neural network (ANN), K-nearest neighbors (KNN), Naive Bayes, and support vector machine (SVM). The evaluation in this study implemented cross-validation with a K-fold value of 5. The method performance produced the highest accuracy value of 100% using the color and texture features with the SVM classifier.
A comparative study of machine learning methods for drug type classification Tejawati, Andi; Suprihanto, Didit; Ery Burhandenny, Aji; Saipul, Saipul; Puspitasari, Novianti; Septiarini, Anindita
Bulletin of Electrical Engineering and Informatics Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i4.9477

Abstract

Drugs, commonly called narcotics, are dangerous substances that, if consumed excessively, can result in addiction and even death. Drug abuse in Indonesia has reached a concerning stage. In 2017, the National Narcotics Agency detected 46,537 drug-related incidents, including methamphetamine, marijuana, and ecstasy. There are 4 types of substances that can affect drug users, such as hallucinogens, depressants, opioids, and stimulants. A machine learning approach can detect these substances using user symptom data as input. This study uses six different methods in classifying, including decision tree, C.45, K-nearest neighbor (KNN), random forest, and support vector machine (SVM). The dataset comprises 144 data and 21 attributes based on the user's symptoms. The evaluation method in this study uses cross-validation with K-fold values of 5 and 10 and uses three parameters: precision, recall, and accuracy. KNN yields the most optimal results by using K=1 and K-fold 10 in the Euclidean and Minkowski types. The model achieves precision, recall, and accuracy of 91.9%, 91.7%, and 91.67%, respectively.
Enhanced Semarang batik classification using deep learning: a comparative study of CNN architectures Winarno, Edy; Solichan, Achmad; Putra Ramdani, Aditya; Hadikurniawati, Wiwien; Septiarini, Anindita; Hamdani, Hamdani
Bulletin of Electrical Engineering and Informatics Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i5.9347

Abstract

Batik is an important part of Indonesia’s cultural heritage, with each region producing unique designs. In Central Java, Semarang is known for its distinctive batik patterns that reflect rich local traditions. However, many people are still unfamiliar with these designs, which threatens their preservation. This study develops an automated system to classify Semarang batik patterns, showing how technology can help safeguard cultural heritage. A convolutional neural network (CNN) approach was used to recognize ten batik types, including Asem Arang, Asem Sinom, Asem Warak, Blekok, Blekok Warak, Gambang Semarangan, and Kembang Sepatu. Pre-processing steps—such as image resizing, cropping, flipping, and rotation—improved model performance and reduced complexity. Five CNN architectures (MobileNetV2, ResNet-50, DenseNet-121, VGG-16, and EfficientNetB4) were tested using 224×224 input size, Adam optimizer, ReLU activation, and categorical cross-entropy loss. Results show VGG-16, ResNet-50, and DenseNet-121 achieved perfect accuracy (1.0) on a dataset of 3,000 locally collected images. These findings highlight CNN models’ strong potential for batik pattern recognition, supporting digital preservation of Indonesian culture.
Co-Authors Abdul Razak Aliudin Adi Muhammad Syifai Adnan, Fahrizal Afifah, Dinda Nur Agus Qomaruddin Munir AHMAD ANSYORI Ahmad Nur Fauzan Ajay, Muhammad Akhmad Masyudi Alameka, Faza Alif Rifa’i Alvito Gabbriel Saputra Ambari, Nasser Ambon, Matelda Yunanta Andri Syafrianto Anggari, Ricky Annisa Putri Novalianti Anton Prafanto ARIF HIDAYAT Arini Wijayanti Asmita, Rizka Aulia Rahman Awang Harsa Kridalaksana Awang Zheri Rhesvianur Az Zahrah, Rezha Nur Bandhaso, Victor Briyan Efflin Syahputra Budi Rahmani Budiman, Edy Cakra Dewandaru Christy Maulidiah Daffa Putra Mahardika Didit Suprihanto, Didit Dwi Prasetio Dyna Marisa Khairina Edy Winarno Eka Priyatna, Surya Enny Itje Sela Ery Burhandenny, Aji Ery Burhandeny, Aji Evi Wildana Fahrozi, Muhammad Naufal Fairil Anwar Fajri, Muhamad Mushfa Hikmatal Fandi Alief Al Akbar Fathia Nuq Qamarina Fauzan, Ahmad Nur Fayza Virdana Addiza Firyal, Tasya Nadina Fornia, Daviana Dwitasari Enka Fuad, Natalie Gempar Panggih Dwi Gunawan, Ayu Lestari Hairah, Ummul Hairah, Ummul Hakim, Muhammad Irvan Hamdani Hamdani . Hamdani Hamdani Hamdani Hamdani Hamdani Hamdani Hamdani Hamdani Hanif, Ahmad Luthfi Hatta, Heliza Rahmania Haviluddin Haviluddin Haviuddin, Haviluddin Heliza Hatta Heliza Rahmania Hatta, Heliza Rahmania Henderi . Heni Sulastri Heru Ismanto Hidayat, Ahmad Nur Hutagalung, Wilson Boyaron Hutapea, Vedra Dian Sierrafina Ibnu Amri Thaher Ifnu Umar Indah Fitri Astuti Indah Wulan Lestari Irfan, Aliya Kalingga Dwindra Putraka Kamila, Vina Zahrotun Kiki Purwanti Laraswati, Sherina Lempas, Gidion Lili, Juniver Veronika M. Rizky Nilzamyahya Maharani, Agustina Dwi Mahendra, Dicky Alvian Masa, Amin Padmo Azam Masna Wati Masyudi, Akhmad Medi Taruk Mewengkang, Alfrina Muhamad Azhari Muhammad Abdillah Muhammad Abdillah Muhammad Andas Lesmana Muhammad Dzacky Muhammad Ifandi Muhammad Nur Ramadhan Muhammad Sofian Sauri Mu’nisah Assisi Nanda Arianto Nathaniela Aptanta Parama Nggotu, Antonieta Aryuka Paskalia Novianti Puspitasari Nupa, Joy Disanto Nur Madia Nurcahyono, Damar Nurhidayat, Rifki Nurmadewi, Dita Olivia Octavia Padmo Azam Masa, Amin Patricia Chandra Pebianoor, Pebianoor Prafanto, Anton Pramudya, Pranata Eka Pratiwi, Sinthya Ayu Puspitasari, Novianti Puspitasari, Novitanti Putra Ramdani, Aditya Putri, Septi Aulia Rafi Ichsanul Iqbal Rahmat Kamara Raihanfitri Adi Kalipaksi Ramadhaniaty, Dinda Reski Harisma Dewi Barkah Reviansa Fakhruddin Aththar Risky Kurniawan Riswandi Syam Rita Diana Riyayatsyah, Riyayatsyah Rizqi Saputra Rondongalo Rismawati Rosmasari, Rosmasari Sadewa, Bintang Putra Saipul, Saipul Sakti, Dwi Nika Salsabila, Nur Maya Saragih, Muhammad Nabil Sarira, Brayen Tisra Satria Bagus Eka Chandra Saucha Diwandari Setiawan, Maulana Agus Sihombing, Yobel Fernanda Siti Retno Wulandari Sugandi Sugandi Sumaini Sumaini Supriyono Supriyono Supriyono Supriyono Syaffira Rizky Amalia Taruk, Medi Tejawati, Andi Tulili, Hadie Pratama Ummul Hairah Vicky Pranandika Wijaksana Viny Christanti M Wahyudi, Moh Ikhwan Wati, Masna Wibisono, Bramantyo Ardi Harimurti Widians, Joan Angelina Wintin, Chintia Liu Wiwien Hadikurniawati Yanuar Satria Gotama Yasmin, Annisa Yudi Sukmono, Yudi Yuyun Nabilawati Rumbia zahra salsabila Zainal Arifin