Claim Missing Document
Check
Articles

Detecting Emotion in Indonesian Tweets: A Term-Weighting Scheme Study Kuncahyo Setyo Nugroho; Fitra A. Bachtiar; Wayan Firdaus Mahmudy
Journal of Information Systems Engineering and Business Intelligence Vol. 8 No. 1 (2022): April
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jisebi.8.1.61-70

Abstract

Background: Term-weighting plays a key role in detecting emotion in texts. Studies in term-weighting schemes aim to improve short text classification by distinguishing terms accurately. Objective: This study aims to formulate the best term-weighting schemes and discover the relationship between n-gram combinations and different classification algorithms in detecting emotion in Twitter texts. Methods: The data used was the Indonesian Twitter Emotion Dataset, with features generated through different n-gram combinations. Two approaches assign weights to the features. Tests were carried out using ten-fold cross-validation on three classification algorithms. The performance of the model was measured using accuracy and F1 score. Results: The term-weighting schemes with the highest performance are Term Frequency-Inverse Category Frequency (TF-ICF) and Term Frequency-Relevance Frequency (TF-RF). The scheme with a supervised approach performed better than the unsupervised one. However, we did not find a consistent advantage as some of the experiments found that Term Frequency-Inverse Document Frequency (TF-IDF) also performed exceptionally well. The traditional TF-IDF method remains worth considering as a term-weighting scheme. Conclusion: This study provides recommendations for emotion detection in texts. Future studies can benefit from dealing with imbalances in the dataset to provide better performance. Keywords: Emotion Detection, Feature Engineering, Term-Weighting, Text Mining
ASPECT EXTRACTION IN E-COMMERCE USING LATENT DIRICHLET ALLOCATION (LDA) WITH TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) Satyawan Agung Nugroho; Fitra A Bachtiar; Randy Cahya Wihandika
Jurnal Ilmiah Kursor Vol 11 No 2 (2021)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21107/kursor.v11i2.247

Abstract

Social media is a common thing that people use. Posts or comments found on social media describe someone’s feelings and opinions so there have to be important topics that can be extracted from social media. In the e-commerce field, topic is an interesting thing to know because it can describes people’s opinion towards a product. However, the large number of social media users is currently making the process of finding topics from social media difficult, so computer assistance is needed. One method that can be used is Latent Dirichlet Allocation (LDA). LDA is a good method for extracting topics, but the drawback is that sometimes the topics are incomprehensible. To cover up the drawback, TF-IDF feature selection method is used so that less important words can be skipped so LDA can generate a better topic. The best hyperparameter values ​​obtained were 10 iterations, 10 topics, α and β values consecutively 0,1 and 0,01. The best feature selection percentile value is 90. This value is used to find the threshold that can be used as the lower limit of the TF-IDF value of each word so that the word with greater TF-IDF value can be used as feature.
Implementasi Topsis untuk Menentukan Rekomendadi Makanan Anak Usia 1-3 Tahun pada Sistem Monitoring Tumbuh Kembang Anak Fajar Pradana; Fitra A. Bachtiar; Rona Salsabila
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 4: Agustus 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021844370

Abstract

 AbstractPenting bagi orang tua untuk memperhatikan pertumbuhan anak secara teratur terutama pada saat periode emasnya. Usia emas pada anak berada pada saat 1000 hari pertama sejak kelahiran atau hingga anak berusia 2 tahun, tumbuh kembang anak dapat meningkat sangat signifikan pada usia ini. Pertumbuhan anak dapat maksimal apabila nutrisi yang diberikan juga tepat sejak usia lahir sampai 3 tahun. Stunting (kerdil) merupakan salahsatu penyakit yang disebabkan karena kurangnya nutrisi pada anak. Stunting adalah sebuah kondisi dimana bayi memiliki panjang dan tinggi badan yang lebih rendah daripada bayi pada umumnya. Pola asuh orang tua terhadap bayi secara mandiri menjadi sangat diperlukan. Untuk membantu orang tua dalam memantau tumbuh kembang anak serta mengurangi peningkatan jumlah bayi stunting maka dibangun sistem monitoring tumbuh kembang anak berbasis web. Pada sistem ini terdapat fitur untuk memberikan rekomendasi makanan berdasarkan  kebutuhan kalori setiap anak. Dalam menentukan rekomendasi makanan diperlukan metode Sistem Pendukung Keputusan (SPK) sesuai dengan kebutuhan kalori anak. Dalam penerapan SPK, terdapat metode yang dapat digunakan untuk melakukan analisis data antara lain adalah metode Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Alternatif yang digunakan meliputi nama makanan yang dapat dikonsumsi oleh anak usia 1 sampai dengan 3 tahun. Sedangkan kriteria yang digunakan adalah kalori yang didalamnya terdapat karbohidrat, lemak, protein, dan kalsium. 3. Hasil perankingan yang diberikan oleh TOPSIS pada telah berhasil memberikan perankingan dengan nilai yang berbeda-beda, kecuali pada beberapa alternatif. Hal itu dikarenakan kesamaan nilai dari kedua alternatif pada setiap kriteria.  AbstractIt is important for parents to pay attention to the growth of the child in the golden period. The golden age in children remains in the first 1000 days from birth or until the child is born 2 years, child growth and development can increase very significantly at this age. The number of children who can reach a maximum age of 3 years. Stunting is a disease that causes nutritional deficiencies in children. Stunting is a place where babies have a lower length and height than a baby's place in general. Parenting for independent babies is needed. To help parents in developing child growth and development also increase the number of stunting babies a web-based growth and development monitoring system was built. This system provides features to provide food recommendations based on the calorie needs of each child. In determining food recommendations, a Decision Support System (SPK) method is needed in accordance with the calorie needs of children. In the application of SPK, methods that can be used to analyze data include the Technical Method for Preference Order with Similarity to Ideal Solution (TOPSIS). The alternatives used are the names of foods that can be consumed by children aged 1 to 3 years. While the criteria used are calories in fat, fat, protein, and calcium. 3. The ranking results given by TOPSIS have succeeded in ranking them with different values, except for a number of alternatives. That's because it considers the value of the two alternatives on each criterion. 
Metode Deteksi Intrusi Menggunakan Algoritme Extreme Learning Machine dengan Correlation-based Feature Selection Sulandri Sulandri; Achmad Basuki; Fitra Abdurrachman Bachtiar
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 1: Februari 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.0813358

Abstract

Deteksi intrusi pada jaringan komputer merupakan kegiatan yang sangat penting dilakukan untuk menjaga keamanan data dan informasi. Deteksi intrusi merupakan proses monitor traffic pada sebuah jaringan untuk mendeteksi adanya pola data yang dianggap mencurigakan, yang memungkinkan terjadinya serangan jaringan. Penelitian ini melakukan analisis pada traffic jaringan untuk mengetahui apakah paket tersebut mengandung intrusi atau merupakan paket normal. Data traffic yang digunakan untuk deteksi intrusi pada penelitian ini diambil dari dataset KDD Cup. Metode yang digunakan untuk melakukan deteksi intrusi dengan cara klasifikasi yaitu dengan menggunakan metode Extreme Learning Machine (ELM). Namun, dengan menggunakan metode ELM saja tidak mampu untuk menghasilkan akurasi yang baik maka, pada metode ELM perlu ditambahkan metode seleksi fitur Correlation-Based Feature Selection (CFS) untuk meningkatkan hasil akurasi dan waktu komputasi. Hasil penelitian yang dilakukan dengan menggunakan metode ELM menunjukkan tingkat akurasi mencapai 81,97% dengan waktu komputasi 3,39 detik. Setelah ditambahkan metode seleksi fitur CFS pada ELM tingkat akurasi meningkat secara signifikan menjadi 98,00% dengan waktu komputasi 2,32 detik. AbstractIntrusion detection of computer networks is a very important activity carried out to maintain data and information security. Intrusion detection is the process of monitoring traffic on a network to detect any data patterns that are considered suspicious, which allows network attacks. This research analyzes the network traffic to find out whether the packet contains intrusion or is a normal packet. Traffic data used for intrusion detection in this study were taken from the KDD Cup dataset. The method used to do intrusion detection by classification is using the Extreme Learning Machine (ELM) method. However, using the ELM method alone is not able to produce good accuracy, so the ELM method needs to be added to the Correlation-Based Feature Selection (CFS) feature selection method to improve the accuracy and computational time. The results of the research conducted using the ELM method showed an accuracy rate of 81.97% with a computation time of 3.39 seconds. After adding the CFS feature selection method to ELM the accuracy level increased significantly to 98.00% with a computing time of 2.32 seconds.
Implementasi Weighted Product untuk memberikan Rekomendasi Prospek Pelanggan bagi Sales Marketing Berdasarkan Web Analytics Fajar Pradana; Fitra Abdurrachman Bachtiar; Mochammad Dearifaldi Al Ikhsan
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7 No 2: April 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2020702586

Abstract

Keberhasilan sebuah perusahaan dalam memasarkan produk atau jasa yang ditawarkan sangat tergantung dari kinerja marketing. Kegiatan marketing saat ini berkembang tidak hanya dilakukan secara kovensional melalui tatap muka langsung dengan pelanggan. Salah satu pemasaran yang dilakukan pada perusahaan adalah dengan digital marketing. Digital marketing menggunakan Internet dan World Wide Web untuk mendekati pelanggan. Dalam mencapai tujuan ini, perusahaan harus mengadopsi Web analytics, yang didefinisikan sebagai pengukuran, pengumpulan, analisis dan pelaporan data Internet untuk tujuan memahami dan mengoptimalkan penggunaan Web. Dengan melakukan web analytics, marketing dapat mengenali calon pelanggan prospek yang sering mengakses website perusahaan. Tidak seperti kegiatan marketing konvensional, kegiatan mengenali pengunjung website menjadi kesulitan tersendiri. Pada penelitian ini akan dilakukan penggalian data lebih dalam untuk melihat perilaku dari pengunjung website dari sebuah perusahaan dengan menggunakan metode Weighted Product. Parameter yang dipertimbangkan antara lain: jumlah kunjungan (visit), durasi kunjungan (visit length), jumlah halaman yang dilihat (pageview), jumlah satu halaman yang dilihat pada satu kali kunjungan (bounce), kategori dari traffic source (medium), dan asal dari traffic (source). Berdasarkan proses perhitungan dan pengujian validasi maka didapatkan nilai kecocokan 100%. Sehingga dapat disimpulkan sistem rekomendasi memiliki tingkat akurasi yang tinggi. Abstract The success of a company in marketing the product or service offered is very dependent on marketing performance. Marketing activities currently developing are not only done conventionally through face-to-face contact with customers. One of the marketing activities done by companies is digital marketing. Digital marketing uses the Internet and the World Wide Web to approach customers. In achieving this goal, companies must adopt Web analytics, which is defined as "measurement, collection, analysis and reporting of Internet data for the purpose of understanding and optimizing Web use. By doing web analytics, marketing can recognize potential customers who often access the company's website. Unlike conventional marketing activities, the activity of recognizing website visitors becomes a particular difficulty. In this study deeper data will be extracted to see the behavior of website visitors from a company using the Weighted Product method. Parameters considered include: number of visits (visit length), number of visits (pageview), number of pages viewed at one visit (bounce), category of traffic source (medium), and origin from traffic (source). Based on the comparison of the results of the decision by applying the WP and the expert achieving a 100% match value. So it can be concluded that the recommendation system has a high level of accuracy.
Penerapan Algoritme Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN) Untuk Klasifikasi Hasil Kinerja Pegawai Negeri Sipil Adam Syarif Hidayatullah; Fitra Abdurrachman Bachtiar; Imam Cholissodin
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 6: Desember 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021834431

Abstract

Keberhasilan sebuah perusahaan terjadi karena dapat mengelola sumber daya manusianya dengan baik begitu juga sebaliknya. Salah satu instansi yang mengelola sumber daya manusia menggunakan Manajemen Talenta adalah Badan Kepegawaian Daerah (BKD) kota Malang, dengan mengevaluasi pegawainya setiap tahunnya setelah pekerjaan selesai dilakukan. Hal ini menyebabkan hasil pekerjaan yang telah dilakukan tidak optimal, sehingga perlu identifikasi dini pegawai yang memiliki kinerja dibawah rata – rata sehingga dapat dievaluasi dan meminimalisir hasil pekerjaan yang tidak optimal dengan menggunakan teknik klasifikasi. Penelitian ini menggunakan teknik klasifikasi Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN). Metode ini merupakan metode modifikasi dari metode K-Nearest Neighbor (KNN) dan dibuktikan memiliki performa lebih baik dibandingkan dengan metode aslinya KNN. Dilakukan pengujian F1-Score dan akurasi menggunakan K-Fold Cross Validation untuk mengetahui persebaran akurasi dan juga pengujian mengenai pengaruh normalisasi karena tidak ada informasi normalisasi pada penelitian sebelumnya. Metode pada kasus ini menghasilkan performa klasifikasi yang baik, dibuktikan bahwa hasil akurasi dan F1-Score oleh metode ini berturut – turut ialah mencapai 98,8% dan 98,1%. AbstractThe success of company occurs because is manage human resources well and vice versa. One of institute that mange human resource using Talent Management is Malang city Badan Kepegawaian Daerah (BKD), which evaluates its employee annually after the work is completed. This can cause not optimal work result, so it necessary to early identification of employees who have performance below average performance so that can be evaluated and minimize not optimal result. This study is use classification technique Nearest Centroid Neighbor Classifier Based on K Local Means Using Harmonic Mean Distance (LMKHNCN). This method is modified base algorithm of K-Nearest Neighbor (KNN). F1-Score and Accuracy using K-Fold Cross Validation to measure performance of this method and normalization testing due to no any information about that in previous study. This method is proven to have better performance compared to it original algorithm KNN. The method in this study has produced good classification performance. The result of classification accuracy and F1-Score by this method reach 98,8% dan 98,1%.
Optimasi Nilai K pada Algoritma KNN untuk Klasifikasi Spam dan Ham Email Eko Laksono; Achmad Basuki; Fitra Bachtiar
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 4 No 2 (2020): April 2020
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (464.316 KB) | DOI: 10.29207/resti.v4i2.1845

Abstract

There are many cases of email abuse that have the potential to harm others. This email abuse is commonly known as spam, which contains advertisements, phishing scams, and even malware. This study purpose to know the classification of email spam with ham using the KNN method as an effort to reduce the amount of spam. KNN can classify spam or ham in an email by checking it using a different K value approach. The results of the classification evaluation using confusion matrix resulted in the KNN method with a value of K = 1 having the highest accuracy value of 91.4%. From the results of the study, it is known that the optimization of the K value in KNN using frequency distribution clustering can produce high accuracy of 100%, while k-means clustering produces an accuracy of 99%. So based on the results of the existing accuracy values, the frequency distribution clustering and k-means clustering can be used to optimize the K-optimal value of the KNN in the classification of existing spam emails.
Evaluasi Topik Tersembunyi Berdasarkan Aspect Extraction menggunakan Pengembangan Latent Dirichlet Allocation Dinda Adimanggala; Fitra Abdurrachman Bachtiar; Eko Setiawan
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 3 (2021): Juni 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (451.401 KB) | DOI: 10.29207/resti.v5i3.3075

Abstract

Recently, Sentiment Analysis is used for expression detection of products or services. Sentiment Analysis is one category type with a level of aspect focused on extracting product aspects. One of the common methods used for aspect extraction is Latent Dirichlet Allocation (LDA) using random topic identification, but this method has not been able to find an acceptable topic with some aspects having been found. Undeterminable topics are referred to as the hidden topics. This study purpose is to evaluate and compare the suitability of identifying hidden topics between human and computer evaluation. The study is also focused on aspect extraction using a variety of LDA innovations. The data used in this study used case studies on e-Commerce. Data were processed using feature selection and grouped using LDA development. Then the data results are processed using Latent Topic Identification based on subjective and objective evaluations. The identification of hidden topic results was evaluated using several semantic and lexicon tests. The evaluation results indicate the comparison of two hidden topic identification assessment values is quite relevant with the average difference in value reaching 6%. As a result, computer calculations assist humans in determining topics if each topic has a low coherence value.
Opinion Spam Classification on Steam Review using Support Vector Machine with Lexicon-Based Features Rafif Taqiuddin; Fitra A. Bachtiar; Welly Purnomo
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 6, No. 4, November 2021
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v6i4.1323

Abstract

Steam is a video game digital distribution platform developed by Valve Software. Steam provides a user review feature, where users can write about criticism or comments on games that can contain positive or negative sentiments. Based on the questionnaire that the author conducted to Steam users from all over Indonesia, the user review feature provided by Steam was not sufficient. This is because there are fake reviews that allow biased opinions from certain parties so that a phenomenon called review bombing often occurs where users review only to drop or raise the image of a product, not to review it sincerely. From these problems, a solution design is needed that can classify fake reviews on the Steam service. The Support Vector Machine (SVM) classification method was chosen as the model in combination with lexicon-based feature retrieval and Term Frequency – Inverse Document Frequency (TF-IDF) weighting. Of the 236 classification test data conducted by SVM, it produced 105 reviews which were categorized as Valid Reviews. Meanwhile, those categorized as Opinion Spam by SVM are 131 reviews. The accuracy level of the data classification model using Support Vector Machine method is of 81% by dividing training data by 70% and test data by 30% with a random state level of 109. A dashboard in the form of a web application has also been made that contains the classification model to be used for buying reference for Steam user.
Optimasi Asymmetric City Tour di Kota Kediri Menggunakan Ant Colony System Abidatul Izzah; Benni A. Nugroho; Wayan F. Mahmudy; Fitra A. Bachtiar
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 9 No 1: Februari 2020
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1286.784 KB) | DOI: 10.22146/jnteti.v9i1.112

Abstract

Kediri City is a stopover/transit city and has many potentials in the fields of tourism, education, and industry. Thus, the City of Kediri became one of the cities that are very likely to develop and be crowded. Therefore, it is required to model city tours in several primary fields of Kediri City. In the literature, determining the optimum route can be approached as a traveling salesman problem. However, traveling salesman problem model cannot be used to determine the city tour path as the distance among the point may vary. In this study, we used the concept of asymmetric traveling salesman problem to solve the city tour path. Furthermore, we used the ant colony system algorithm to solve this problem. The cases resolved in this study are the location of the tourism center, industrial center, and education center in Kediri City. The results show the ant colony system is capable of providing optimum tour route solutions, namely the city tourist route 34.65 km, the industrial route 21.19 km, and the school route 28 km.
Co-Authors AA Sudharmawan, AA Abidatul Izzah Abu Wildan Mucholladin Achmad Arwan Achmad Basuki Achmad Fahlevi Achmad Firmansyah Sulaeman Achmad Hanim Nur Wahid Achmad Ridok Adam Hendra Brata Adam Syarif Hidayatullah Adam Syarif Hidayatullah Adinugroho, Sigit Aditya Rachmadi Aditya Rachmadi, Aditya Admaja Dwi Herlambang, Admaja Dwi Admi Rut Sinana Afida, Latansa Nurry Izza Afifurrijal Afifurrijal Agus Wahyu Widodo Ahmad Afif Supianto Ahmad Afif Supianto Ahmad Afif Supianto Ahmad Afif Supianto Ahmad Fairuzabadi Ahmad Foresta Azhar Zen Aisyah Awalina Aisyah Awalina Aisyatul Maulidah Aisyatul Maulidah Akhmad Lazuardi Alaikal Fajri Nur Alfian Aldi Fianda Putra Alfi Nur Rusydi Alfin Taufiqurrahman Alfirsa Damasyifa Fauzulhaq Alhasyimi, Dana Mustofa Alifi Lazuardi Gunawan Amalia Kusuma Akaresti Andi Alifsyah Dyasham Anggit Chalilur Rahman Anita Rizky Agustina Anita Rizky Agustina Anjasari, Ni Luh Made Beathris Anjumi Kholifatu Rahmatika Annuranda, Ramansyah Eka Apriyanti -, Apriyanti Ardi Wicaksono ari kusyanti Arieftia Wicaksono Aulia Akhrian Syahidi Aulia Dewi Savitri Aulia Nurrahma Rosanti Paidja Aulia Septi Pertiwi Azhar Izzannada Elbachtiar Azzam Syawqi Aziz Baharudin Yusuf Widiyanto Barlian Henryranu Prasetio Bayu Aji Firmansyah Bayu Sutawijaya Benni A. Nugroho Bere, Stevania Biabdillah, Fajerin Bianca Pingkan Nevista Bintang Fajrianti Brahma Hanif Farhansyah Budi Darma Setiawan Budi Setiawan Cahya, Reiza Adi Cinthia Vairra Hudiyanti Dariswan Janweri Perangin-Angin Dary Ardiansyah Haryono Dea Zakia Nathania Dedi Romario Delpiero, Rangga Raditya Desy Setya Rositasari Dika Imantika Dimas Angga Nazaruddin Dinda Adimanggala Dito William Hamonangan Gultom Diva Fardiana Risa Diva Fardiana Risa Djoko Pramono Dona Adittia Dyah Ayu Wulandari Dyah Ayu Wulandari Dzar Romaita Eka Devi Prasetiya Eka Yuni Darmayanti Eko Laksono Eko Setiawan Elok Nuraida Kusuma Dewi Fabiansyah Cahyo Kuncoro Pradipta Faizatul Amalia Fajar Pradana Fajar Pradana Fajerin Biabdillah Faranisa, Puspa Ayu Fardan Ainul Yaqiin Farhan Setya Dhitama Farid Syauqi Nirwan Fasya Ghassani Hadiyan Fatwa Ramdani, Fatwa Ferdian Maulana Akbar Ferry Ardianto Rismawan Ficry Agam Fathurrachman Fikar Mukamal Gandhi Ramadhona Giga Setiawan Gregorius Dhanasatya Pudyakinarya Gultom, Dito William Hamonangan Gunawan, Alifi Habib Bahari Khoirullah Haikal, Raihan Hanif Prasetyo Maulidina Hanifah Khoirunnisak Hanifah Muslimah Az-Zahra Hanifah Muslimah Az-Zahra, Hanifah Muslimah Haryowinoto Rizqul Aktsar Hasyir Daffa Ibrahim Hayashi, Yusuke Herman Tolle Heryana, Ana Hirashima, Tsukasa Holiyanda Husada Hutamaputra, William Ihza Razan Alghifari Ikhsan Putra Arisandi Ikrom Septian Hadi Ilham Pambudi Imam Cholissodin Imam Cholissodin Imam Cholissodin Indra K. Syahputra Indra Kurniawan Syahputra Indriati Indriati Indriati Indriati Intan Yusuf Habibie Iqbal Taufiq Ahmad Nur Irfani, Ilham Irma Nurvianti Irwan Suprianto Issa Arwani Ivqonnada Al Mufarrih Joseph Ananda Sugihdharma Joseph Ananda Sugihdharma Julia Ferlin Kartiko, Erik Yohan Katrina Puspita Kevin Gusti Farras Fari' Utomo Kharis Alfian Kharis Alfian Kresna Hafizh Muhaimin Krisnabayu, Rifky Yunus Krisnandi, Dikdik Kuncahyo Setyo Nugroho Kurnia Fakhrul Izza Kusumo, R. Budiarianto Suryo Lailil Muflikhah Ludgerus Darell Perwara Luthfi Afrizal Ardhani M Reza Syahputra A M. Ali Fauzi M. Khusnul Azhari M. Raabith Rifqi M. Sofyan Irwanto Mar'i, Farhanna Marvel Timothy Raphael Manullang Mawarni, Marrisaeka Michael Stephen Lui Moch Irfan Prayudha Adhianto Mochamad Chandra Saputra Mochamad Havid Albar Purnomo Mochammad Dearifaldi Al Ikhsan Mochammad Dearifaldi Al Ikhsan Moh Iqbal Yusron Mufidatun Nuha Muh. Edo Aprillia Andilala Muhammad Ferdyandi Muhammad Ifa Amrillah Muhammad Tanzil Furqon Muhammad Taufik Dharmawan Muhammad Wafi Muhammad Wafi Muhammad Zulfikarrahman Nabila Leksana Putri Nabila Lubna Irbakanisa Nadifa, Rahajeng Mufti Nainggolan, Cesilia Natasya Nanang Yudi Setiawan Nanang Yudi Setiawan Nanang Yudi Setyawan Nanda Ajeng Kartini Nanda Samsu Dhuha Nasita Ratih Damayanti Naufal Fathirachman Mahing Nourman Hajar Novanto Yudistira Novi Sunu Sri Giriwati Novianti, Siska Nur Wahyu Melliano Hariyanto Nurafifah Alya Farahisya Nurul Hidayat Oddy Aulia Rahman Nugroho Okta Dwi Ariska Ovy Rochmawanti Pamungkas, Gilang Alif Pradana , Fajar Priyambadha, Bayu Pryono, Muhammad Adam Puras Handharmahua Putra Pandu Adikara Rafif Taqiuddin Rafif Taqiuddin Rafly, Andi Raga Saputra Heri Istanto Rahman, Rafli Rahmat Adi Setiawan Ramadhan, Muhammad Fitrah Randy Cahya Wihandika Randy Cahya Wihandika Ratih Kartika Dewi Refi Fadholi Rekyan Regasari Mardi Putri, Rekyan Regasari Mardi Renavitasari, Ivenulut Rizki Diaz Retno Indah Rokhmawati Retno Indah Rokhmawati, Retno Indah Revanza, Muhammad Nugraha Delta Reza Syahputra Rezka Aditya Nugraha Hasan Rezky Dermawan Rhobith, Muhammad Rian Nugroho Ridwan Adi Setiabudi Riski Darmawan Riza Setiawan Soetedjo Rizal Setya Perdana Rizkey Wijayanto Rizkia Desi Yudiari Rizky Adinda Azizah Rizky Muhammad Faris Prakoso Robi Dwi Setiawan Rona Salsabila Said Atharillah Alifka Alhabsyi Samuel Arthur Satrio A. Wicaksono Satrio Agung Wicaksono Satrio Agung Wicaksono Satrio Hadi Wijoyo Satrio Hadi Wijoyo Satyawan Agung Nugroho Satyawan Agung Nugroho Shinta Aprilisia Sifaunnufus Ms, Fi Imanur Sintiya, Karena Siswahyudi, Puad Siti Mutdilah Sofyanda, Erika Yussi Sri Wulan Utami Vitandy Sueddi Sihotang Sugihdharma, Joseph Ananda Sulandri Sulandri Sza Sza Amulya Larasati Taufik Hidayat Timothy Julian Titus Christian Ubaydillah, Achmad Afif Utaminingrum, Fitri Vasha Farisi Sarwan Halim Very Sugiarto, Very Vivy Junita Wahyu Ardiansyah, Mohammad Wahyu Satriyo Wibowo Wahyudi, Hafif Bustani Wayan F. Mahmudy Wayan Firdaus Mahmudy Welly Purnomo Whita Parasati Wicky Prabowo Juliastoro Windy Adira Istiqhfarani Wiratama Ahsani Taqwim Wirdhayanti Paulina Yoga Tika Pratama Yudi Muliawan Yuita Arum Sari Zainal Arifien Zayn, Afta Ramadhan