Claim Missing Document
Check
Articles

Pengembangan Aplikasi Pembelajaran dengan Menerapkan Model Pembelajaran Teams-Games-Tournament (TGT) Anita Rizky Agustina; Fajar Pradana; Fitra Abdurrachman Bachtiar
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 10 No 2: Mei 2021
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1190.349 KB) | DOI: 10.22146/jnteti.v10i2.1310

Abstract

UPT SMP Negeri 6 Gresik is one of the few educational institutions that implement a Teams-Games-Tournament (TGT) learning model in their day-to-day class learning activities. The TGT learning model can assist students in understanding the learning materials by relying on their friends as age-equivalent tutors and via game elements. The current model that was being applied has several issues, where teachers formed the groups conventionally which could decrease the in-class study time. Conventional ways of forming a group leave room for an unfair knowledge distribution among groups, such as a group having only students who have high grades or low grades only. Other than that, the teachers will make a crossword puzzle conventionally. The playing board is made before a learning material is given to the students and the amount of “words” on the puzzle are determined on much material there is and how many groups are formed. The grouping feature is developed using k-means clustering. The development process used the waterfall development process and Codeigniter framework. This application requirement analysis resulted in four actors, 37 functional requirements, and one non-functional requirement. Testing for this research was done by blackbox testing techniques and whitebox testing techniques.
Klasifikasi Aktivitas Manusia Menggunakan Extreme Learning Machine dan Seleksi Fitur Information Gain Fitra Bachtiar; Fajar Pradana; Issa Arwani
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 10 No 3: Agustus 2021
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1438.672 KB) | DOI: 10.22146/jnteti.v10i3.1451

Abstract

Human activity recognition has various benefits in daily lives. However, research in this area is still facing problems that is, unobtrusive data gathering, high dimensionality features, and the algorithm used to classify human activities. Those problems could impact in the result of the developed model. This research is a preliminary study in human activity recognition. Five common human activity will be recognized that is, walking, walking upstairs, walking downstairs, sitting, and standing. The dataset used in this study consist of 1500 data rows and 561 features. Feature selection is performed prior to the modeling step. Information Gain is used as the feature selection in which percentile method is used to subset the number of features in the dataset. The features are then normalized and will classified using ELM. Number of optimal hidden neuron will be searched to yield high predictive accuracy. The results show 240 feature subsets return the higher accuracy. A number of 100 hidden neuron results in highest predictive classification of human activity recognition. The classification results yield accuracy, precision, recall, and F1-score of 0.85.
Penerapan Antarmuka Adaptif Berbasis Perilaku Pemain pada E-Learning Bidang Pemrograman Fajar Pradana; Fitra A. Bachtiar; Retno Indah Rokhmawati
Jurnal Nasional Teknik Elektro dan Teknologi Informasi Vol 10 No 4: November 2021
Publisher : Departemen Teknik Elektro dan Teknologi Informasi, Fakultas Teknik, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1598.883 KB) | DOI: 10.22146/jnteti.v10i4.2165

Abstract

The pandemic has caused a significant impact on the educational sector’s implementation. The teaching and learning process that was previously carried out face-to-face now must be conducted online. Online learning utilizing e-learning is very beneficial for learners because it can be accessed online anytime, anywhere. Not only is it expected to be a medium to share material files that serve as learning supports, but e-learning is also required to replace the teachers’ or lecturers’ role in the classroom. In the teaching and learning process, it is essential to understand the students’ conditions and behaviors. This knowledge of students’ conditions and circumstances during the learning process can be used as resources for improving the quality and students’ learning process. Most of the existing e-learning has not been equipped with features to detect the students’ state while using the system. In this research, an adaptive interface was applied as a reflection of e-learning that could adapt to the characteristics of user behavior. The performance testing results showed that the time required for the log data with 950 active users was 23,35 ms. Meanwhile, based on the functionality test, the system succeeded in displaying the interface according to the cluster member.
Myers-Briggs Type Indicator Personality Model Classification in English Text using Convolutional Neural Network Method Joseph Ananda Sugihdharma; Fitra Abdurrachman Bachtiar
Jurnal Ilmu Komputer dan Informasi Vol. 15 No. 2 (2022): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21609/jiki.v15i2.1052

Abstract

Myers-Briggs Type Indicator (MBTI) is a personality model developed by Katharine Cooks Briggs and Isabel Briggs Myers in 1940. It displays a combination of preferences from four domains. Generally, test takers need to answer about 50 to 70 questions, and it is relatively expensive to know MBTI personality. The researcher developed a personality classification system using the Convolutional Neural Network (CNN) method and GloVe (Global Vectors for Word Representation) word embedding to solve this problem. The dataset used in this research consists of 8,675 data from the Kaggle site. The steps in this research are downloading the dataset from Kaggle, text preprocessing, GloVe weighting, classification using the CNN method, and evaluation using accuracy from the Confusion Matrix. Based on the tests carried out, using GloVe weighting can improve the model accuracy rather than random weighting. The best GloVe word dimensions depend on the metrics used to measure the model performance and the data of the classes contained in the dataset. From the CNN hyperparameter tuning test, the Adamax optimizer performs better and produces higher accuracy than the Adam optimizer. In addition, the CNN hyperparameter tuning increased model accuracy more significantly compared with the best GloVe word embedding dimensions.
Perbandingan Pretrained Model Transformer pada Deteksi Ulasan Palsu Aisyah Awalina; Fitra Abdurrachman Bachtiar; Fitri Utaminingrum
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 3: Juni 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022935696

Abstract

Kemudahan untuk memperoleh informasi saat ini, telah sedikit membantu hidup kita. Seperti mencari ulasan untuk menimbang tempat atau barang yang akan dipilih. Beberapa orang memanfaatkan hal tersebut dengan membuat ulasan palsu untuk kepentingan mereka sendiri. Sehingga deteksi ulasan palsu sangat dibutuhkan. Model Transformer saat ini banyak diterapkan pada pemrosesan bahasa alami karena kinerja yang diperoleh nya sangat baik. Ada dua pendekatan yang dapat dilakukan dalam model Transformer yaitu pre-training dan fine-tuning. Penelitian sebelumnya telah banyak menggunakan fine-tuning dari model Transformer dikarenakan adanya kemudahan dalam pelatihan, waktu yang lebih sedikit, biaya dan kebutuhan lingkungan yang lebih rendah dibanding proses pre-training. Akan tetapi penelitian sebelumnya masih sedikit yang membandingkan model deep learning dengan fine-tuning yang khusus diterapkan pada deteksi ulasan palsu. Penelitian ini melakukan perbandingan model Transformer menggunakan pendekatan fine-tuning dengan metode deep learning yaitu CNN dengan berbagai pretrained word embedding untuk mengatasi deteksi ulasan palsu pada dataset Ott. Model RoBERTa mengungguli model Transformer dan deep learning dimana nilai akurasi 90,8%; precision 90%; recall 91,8% dan f1-score 90,8%. Namun dari segi waktu komputasi model pelatihan, DistilBERT memperoleh waktu komputasi terkecil yaitu dengan nilai 200,5 detik. Meskipun begitu, hasil yang diperoleh model Transformer maupun deep learning memiliki kinerja yang baik untuk deteksi ulasan palsu pada dataset Ott.AbstractThe ease of obtaining information today has helped our lives, like looking for reviews to weigh the place or item to choose. Some people take advantage of this by creating spam reviews for their benefit. So the detection of spam reviews is needed. Transformer models are currently widely applied to natural language processing because they have outstanding performance. Two approaches in the Transformer model is pre-training and fine-tuning. Previous studies have used a lot of fine-tuning due to the ease of training, less time, costs, and lower environmental requirements than the pre-training process. However, a few previous studies compare deep learning models with fine-tuning applied explicitly for detecting spam reviews. This study compares the Transformer model using a fine-tuning approach with a deep learning method, namely CNN, which uses various pre-trained word embedding to overcome the detection of false reviews in the Ott dataset. The result is RoBERTa model outperforms between Transformer and deep learning models, where the accuracy is 90.8%, precision is 90%, recall is 91.8%, and f1-score is 90.8%. Afterward, DistilBERT models obtained the shortest computation time with 200.5 seconds. However, the results obtained by both Transformer and deep learning models perform well to detect spam reviews in the Ott dataset.
Comparing and Analysis of Geospatial Interpolation Prediction Algorithm: Case Study The Quality of Education of Malang and Batu City, Indonesia Erik Yohan Kartiko; Fatwa Ramdani; Fitra Abdurrachman Bachtiar
Journal of Information Technology and Computer Science Vol. 7 No. 1: April 2022
Publisher : Faculty of Computer Science (FILKOM) Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jitecs.202271373

Abstract

Abstract. The number of schools in Indonesia continues to grow. This must also be balanced with improving the quality of education in accordance with the objectives of the 4 SDGs, which as a whole are to improve the quality of education that is inclusive, equitable and provides lifelong learning opportunities. However, until now it is very difficult to determine differences in the quality of education in an area. From the problem of education quality and education equity, it is necessary to have a regional analysis of the quality of education. This analysis can be performed using various geospatial interpolation methods. Geospatial Interpolation is a technique to find the value of a missing variable in a known data range in an area. The data used for the Geospatial interpolation process in this study are School Quality data taken through research questionnaires, as well as school accreditation data at the junior high school level. The geospatial interpolation method used in this study is the Inverse Distance Weighted, Spline, Kriging and Natural Neighbor methods. The use of different interpolation methods can indicate the best method for this research case study. Measurement validation results from each geospatial interpolation method using RMSE. From the results of this accuracy validation, the most accurate method will be obtained in determining the quality of education contained in an area.
Feature extraction comparison for facial expression recognition using adaptive extreme learning machine Muhammad Wafi; Fitra A. Bachtiar; Fitri Utaminingrum
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 1: February 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i1.pp1113-1122

Abstract

Facial expression recognition is an important part in the field of affective computing. Automatic analysis of human facial expression is a challenging problem with many applications. Most of the existing automated systems for facial expression analysis attempt to recognize a few prototypes emotional expressions such as anger, contempt, disgust, fear, happiness, neutral, sadness, and surprise. This paper aims to compare feature extraction methods that are used to detect human facial expression. The study compares the gray level co-occurrence matrix, local binary pattern, and facial landmark (FL) with two types of facial expression datasets, namely Japanese female facial expression (JFFE), and extended Cohn-Kanade (CK+). In addition, we also propose an enhancement of extreme learning machine (ELM) method that can adaptively select best number of hidden neurons adaptive ELM (aELM) to reach its maximum performance. The result from this paper is our proposed method can slightly improve the performance of basic ELM method using some feature extractions mentioned before. Our proposed method can obtain maximum mean accuracy score of 88.07% on CK+ dataset, and 83.12% on JFFE dataset with FL feature extraction.
Geometrial: Development of Educational Digital Game for Combined Two-Dimensional Figure Learning Ahmad Fairuzabadi; Herman Tolle; Fitra A Bachtiar; Ahmad Afif Supianto
Journal of Information Technology and Computer Science Vol. 7 No. 1: April 2022
Publisher : Faculty of Computer Science (FILKOM) Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jitecs.202271339

Abstract

Mathematics is one of the subjects that is often considered difficult and boring for students. This is evidenced by the poor scores obtained by the students. One of the chapters that are considered difficult is the geometry chapter, especially on the topic of combined two-dimensional figures studied by students at the Vocational High School (SMK) level. Spatial skills are needed for students to be able to solve combined two-dimensional figures questions, which to learn will be very difficult without using assisted learning media. While the learning so far is still using the conventional learning approach which is considered boring for students. This is due to the absence of learning media that is fun and can be easily accessed by students. This study tries to present a solution to this problem in the form of a mobile-based educational digital game design that can be accessed by all students. This digital educational game is called Geometry. This study uses Research & Development (R&D) combined with the Agile-Extreme Programming method to develop this educational digital game. Tests were carried out using an expert validation approach to game prototypes. This study uses a questionnaire that adapts the Computer System Usability Questionnaire (CSUQ) to assess the usability aspect of the game system built. Meanwhile, to assess this game from the point of view of educational media, this study used an evaluation questionnaire of material experts and media experts. The development process occurs in 3 iterations of development which includes the ideation, conceptualization, and prototyping stages. The results obtained from the assessment of material experts are 88.9% in the aspect of material suitability, and 85.7% in the suitability aspect of learning evaluation. While the results of the assessment obtained from media experts were 77.1% on the software engineering aspect, 76.3% on the visual design aspect, 80% on the media design aspect, and 77.6% on the system usability aspect (CSUQ).
Facial Expression Recognition Using Convolutional Neural Network with Attention Module Habib Bahari Khoirullah; Novanto Yudistira; Fitra Abdurrachman Bachtiar
JOIV : International Journal on Informatics Visualization Vol 6, No 4 (2022)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.6.4.963

Abstract

Human Activity Recognition (HAR) is an introduction to human activities that refer to the movements performed by an individual on specific body parts. One branch of HAR is human emotion. Facial emotion is vital in human communication to help convey emotional states and intentions. Facial Expression Recognition (FER) is crucial to understanding how humans communicate. Misinterpreting Facial Expressions can lead to misunderstanding and difficulty reaching a common ground. Deep Learning can help in recognizing these facial expressions. To improve the probation of Facial Expressions Recognition, we propose ResNet attached with an Attention module to push the performance forward. This approach performs better than the standalone ResNet because the localization and sampling grid allows the model to learn how to perform spatial transformations on the input image. Consequently, it improves the model's geometric invariance and picks up the features of the expressions from the human face, resulting in better classification results. This study proves the proposed method with attention is better than without, with a test accuracy of 0.7789 on the FER dataset and 0.8327 on the FER+ dataset. It concludes that the Attention module is essential in recognizing Facial Expressions using a Convolutional Neural Network (CNN). Advice for further research first, add more datasets besides FER and FER+, and second, add a Scheduler to decrease the learning rate during the training data.
Analisis Pengaruh Harga, Persepsi Ukuran, Persepsi Reputasi, dan Kualitas Layanan Terhadap Kepercayaan Konsumen Dalam Menggunakan Transportasi Online (Studi Kasus : GO-JEK Indonesia) Muh. Edo Aprillia Andilala; Fitra A. Bachtiar; Mochamad Chandra Saputra
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 2 No 4 (2018): April 2018
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (639.899 KB)

Abstract

GO-JEK Indonesia is an online-based transportation with the most users in Indonesia with 21.6% users. Consumers have more trust in GO-JEK than any other online transportation services. One of the things to consider in choosing a product or service is price. In addition, perceived of size, perceived of reputation, and quality of services are considered to have positive influences on GO-JEK consumer belief. The problem arise is the influence between price, perceived of size, perceived of reputation and service quality with trust is not known. In addition, it is not known which variables are most influential on trust. Multiple linear regression is used to answer the problem. Primary data were obtained from questionnaires distributed online by social media. F test and T test are conducted to know the effect of relationship between price variables, perception size, perception of reptation, and quality of service with trust simultaneously and partially. The results of this study indicate that price and reputation perception have no significant effect on trust. While the perception of size and quality of service has a significant influence on trust. Service quality has the greatest influence to trust. The independent variables used in this study contributed 68.4% to the trust of GO-JEK customers.
Co-Authors AA Sudharmawan, AA Abidatul Izzah Abu Wildan Mucholladin Achmad Arwan Achmad Basuki Achmad Fahlevi Achmad Firmansyah Sulaeman Achmad Hanim Nur Wahid Achmad Ridok Adam Hendra Brata Adam Syarif Hidayatullah Adam Syarif Hidayatullah Adinugroho, Sigit Aditya Rachmadi Aditya Rachmadi, Aditya Admaja Dwi Herlambang, Admaja Dwi Admi Rut Sinana Afida, Latansa Nurry Izza Afifurrijal Afifurrijal Agus Wahyu Widodo Ahmad Afif Supianto Ahmad Afif Supianto Ahmad Afif Supianto Ahmad Afif Supianto Ahmad Fairuzabadi Ahmad Foresta Azhar Zen Aisyah Awalina Aisyah Awalina Aisyatul Maulidah Aisyatul Maulidah Akhmad Lazuardi Alaikal Fajri Nur Alfian Aldi Fianda Putra Alfi Nur Rusydi Alfin Taufiqurrahman Alfirsa Damasyifa Fauzulhaq Alhasyimi, Dana Mustofa Alifi Lazuardi Gunawan Amalia Kusuma Akaresti Andi Alifsyah Dyasham Anggit Chalilur Rahman Anita Rizky Agustina Anita Rizky Agustina Anjasari, Ni Luh Made Beathris Anjumi Kholifatu Rahmatika Annuranda, Ramansyah Eka Apriyanti -, Apriyanti Ardi Wicaksono ari kusyanti Arieftia Wicaksono Aulia Akhrian Syahidi Aulia Dewi Savitri Aulia Nurrahma Rosanti Paidja Aulia Septi Pertiwi Azhar Izzannada Elbachtiar Azzam Syawqi Aziz Baharudin Yusuf Widiyanto Barlian Henryranu Prasetio Bayu Aji Firmansyah Bayu Sutawijaya Benni A. Nugroho Bere, Stevania Biabdillah, Fajerin Bianca Pingkan Nevista Bintang Fajrianti Brahma Hanif Farhansyah Budi Darma Setiawan Budi Setiawan Cahya, Reiza Adi Cinthia Vairra Hudiyanti Dariswan Janweri Perangin-Angin Dary Ardiansyah Haryono Dea Zakia Nathania Dedi Romario Delpiero, Rangga Raditya Desy Setya Rositasari Dika Imantika Dimas Angga Nazaruddin Dinda Adimanggala Dito William Hamonangan Gultom Diva Fardiana Risa Diva Fardiana Risa Djoko Pramono Dona Adittia Dyah Ayu Wulandari Dyah Ayu Wulandari Dzar Romaita Eka Devi Prasetiya Eka Yuni Darmayanti Eko Laksono Eko Setiawan Elok Nuraida Kusuma Dewi Fabiansyah Cahyo Kuncoro Pradipta Faizatul Amalia Fajar Pradana Fajar Pradana Fajerin Biabdillah Faranisa, Puspa Ayu Fardan Ainul Yaqiin Farhan Setya Dhitama Farid Syauqi Nirwan Fasya Ghassani Hadiyan Fatwa Ramdani, Fatwa Ferdian Maulana Akbar Ferry Ardianto Rismawan Ficry Agam Fathurrachman Fikar Mukamal Gandhi Ramadhona Giga Setiawan Gregorius Dhanasatya Pudyakinarya Gultom, Dito William Hamonangan Gunawan, Alifi Habib Bahari Khoirullah Haikal, Raihan Hanif Prasetyo Maulidina Hanifah Khoirunnisak Hanifah Muslimah Az-Zahra Hanifah Muslimah Az-Zahra, Hanifah Muslimah Haryowinoto Rizqul Aktsar Hasyir Daffa Ibrahim Hayashi, Yusuke Herman Tolle Heryana, Ana Hirashima, Tsukasa Holiyanda Husada Hutamaputra, William Ihza Razan Alghifari Ikhsan Putra Arisandi Ikrom Septian Hadi Ilham Pambudi Imam Cholissodin Imam Cholissodin Imam Cholissodin Indra K. Syahputra Indra Kurniawan Syahputra Indriati Indriati Indriati Indriati Intan Yusuf Habibie Iqbal Taufiq Ahmad Nur Irfani, Ilham Irma Nurvianti Irwan Suprianto Issa Arwani Ivqonnada Al Mufarrih Joseph Ananda Sugihdharma Joseph Ananda Sugihdharma Julia Ferlin Kartiko, Erik Yohan Katrina Puspita Kevin Gusti Farras Fari' Utomo Kharis Alfian Kharis Alfian Kresna Hafizh Muhaimin Krisnabayu, Rifky Yunus Krisnandi, Dikdik Kuncahyo Setyo Nugroho Kurnia Fakhrul Izza Kusumo, R. Budiarianto Suryo Lailil Muflikhah Ludgerus Darell Perwara Luthfi Afrizal Ardhani M Reza Syahputra A M. Ali Fauzi M. Khusnul Azhari M. Raabith Rifqi M. Sofyan Irwanto Mar'i, Farhanna Marvel Timothy Raphael Manullang Mawarni, Marrisaeka Michael Stephen Lui Moch Irfan Prayudha Adhianto Mochamad Chandra Saputra Mochamad Havid Albar Purnomo Mochammad Dearifaldi Al Ikhsan Mochammad Dearifaldi Al Ikhsan Moh Iqbal Yusron Mufidatun Nuha Muh. Edo Aprillia Andilala Muhammad Ferdyandi Muhammad Ifa Amrillah Muhammad Tanzil Furqon Muhammad Taufik Dharmawan Muhammad Wafi Muhammad Wafi Muhammad Zulfikarrahman Nabila Leksana Putri Nabila Lubna Irbakanisa Nadifa, Rahajeng Mufti Nainggolan, Cesilia Natasya Nanang Yudi Setiawan Nanang Yudi Setiawan Nanang Yudi Setyawan Nanda Ajeng Kartini Nanda Samsu Dhuha Nasita Ratih Damayanti Naufal Fathirachman Mahing Nourman Hajar Novanto Yudistira Novi Sunu Sri Giriwati Novianti, Siska Nur Wahyu Melliano Hariyanto Nurafifah Alya Farahisya Nurul Hidayat Oddy Aulia Rahman Nugroho Okta Dwi Ariska Ovy Rochmawanti Pamungkas, Gilang Alif Pradana , Fajar Priyambadha, Bayu Pryono, Muhammad Adam Puras Handharmahua Putra Pandu Adikara Rafif Taqiuddin Rafif Taqiuddin Rafly, Andi Raga Saputra Heri Istanto Rahman, Rafli Rahmat Adi Setiawan Ramadhan, Muhammad Fitrah Randy Cahya Wihandika Randy Cahya Wihandika Ratih Kartika Dewi Refi Fadholi Rekyan Regasari Mardi Putri, Rekyan Regasari Mardi Renavitasari, Ivenulut Rizki Diaz Retno Indah Rokhmawati Retno Indah Rokhmawati, Retno Indah Revanza, Muhammad Nugraha Delta Reza Syahputra Rezka Aditya Nugraha Hasan Rezky Dermawan Rhobith, Muhammad Rian Nugroho Ridwan Adi Setiabudi Riski Darmawan Riza Setiawan Soetedjo Rizal Setya Perdana Rizkey Wijayanto Rizkia Desi Yudiari Rizky Adinda Azizah Rizky Muhammad Faris Prakoso Robi Dwi Setiawan Rona Salsabila Said Atharillah Alifka Alhabsyi Samuel Arthur Satrio A. Wicaksono Satrio Agung Wicaksono Satrio Agung Wicaksono Satrio Hadi Wijoyo Satrio Hadi Wijoyo Satyawan Agung Nugroho Satyawan Agung Nugroho Shinta Aprilisia Sifaunnufus Ms, Fi Imanur Sintiya, Karena Siswahyudi, Puad Siti Mutdilah Sofyanda, Erika Yussi Sri Wulan Utami Vitandy Sueddi Sihotang Sugihdharma, Joseph Ananda Sulandri Sulandri Sza Sza Amulya Larasati Taufik Hidayat Timothy Julian Titus Christian Ubaydillah, Achmad Afif Utaminingrum, Fitri Vasha Farisi Sarwan Halim Very Sugiarto, Very Vivy Junita Wahyu Ardiansyah, Mohammad Wahyu Satriyo Wibowo Wahyudi, Hafif Bustani Wayan F. Mahmudy Wayan Firdaus Mahmudy Welly Purnomo Whita Parasati Wicky Prabowo Juliastoro Windy Adira Istiqhfarani Wiratama Ahsani Taqwim Wirdhayanti Paulina Yoga Tika Pratama Yudi Muliawan Yuita Arum Sari Zainal Arifien Zayn, Afta Ramadhan