Claim Missing Document
Check
Articles

Proses Berpikir Kritis Siswa Reflektif dalam Menyelesaikan Masalah Matematika pada Materi Sistem Persamaan Linier Dua Variabel Christiyanto, Dana Yuli; Sulandra, I Made; Rahardi, Rustanto
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 3, No 10: OKTOBER 2018
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (48.547 KB) | DOI: 10.17977/jptpp.v3i10.11670

Abstract

Abstract: This study aims to describe the reflective students' critical thinking process in solving the problem of two-variable linear equation system. Instruments used to know the critical thinking process of the subject is a problem-solving test and interview. Through tests and interviews, we can analyze the critical thinking process of the subject based on six criteria focus, reason, inference, situation, clarity, and overview. The results showed that both subjects only met the criteria of focus, and experienced errors in making mathematical models, so that both are not able to solve the problem.Abstrak: Penelitian ini bertujuan untuk mendeskripsikan proses berpikir kritis siswa reflektif dalam menyelesaikan masalah sistem persamaan linier dua variabel. Instrumen yang digunakan untuk mengetahui proses berpikir kritis subjek adalah tes pemecahan masalah dan wawancara. Melalui tes dan wawancara, dapat dianalisis proses berpikir kritis subjek berdasarkan enam kriteria, yaitu focus, reason, inference, situation, clarity, dan overview. Hasil penelitian menunjukkan kedua subjek hanya memenuhi kriteria focus, serta mengalami kesalahan dalam membuat model matematika sehingga keduanya tidak mampu menyelesaikan masalah.
THE EMERGENCE OF STUDENTS’ METACOGNITION IN THE PROCESS OF MATHEMATICAL PROBLEM SOLVING Kusumaningtyas, Nopem; Sa'dijah, Cholis; Rahardi, Rustanto; Rahardjo, Swasono
International Journal of Insights for Mathematics Teaching (IJOIMT) Vol 1, No 1 (2018)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Developing a problem-solving skill for important things which need to be paid attention is how the students' thinking process in solving a problem is. Thinking about what is thought in this term relates to students' awareness of their ability to develop various ways which may be taken in solving a problem is known as metacognition. The existence of metacognition is very important for students in solving mathematical problems. This is a qualitative study using the grade VII students having medium ability as the subjects. The results of the study obtained that through intervention conducted by the researchers in 5 meetings, metacognition capability emerged in the subjects so that with their own ability they are able to solve mathematical problems provided.
Profil Komunikasi Matematis Tulis Siswa Pembelajaran Daring dalam Menyelesaikan Masalah Bangun Ruang Sisi Lengkung Cahyani, Nia; Muksar, Makbul; Rahardi, Rustanto
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 6, No 7: JULI 2021
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v6i7.14646

Abstract

Abstract: The purpose of this study is to describe the profile of online learning students’ written mathematical communication in solving problems about curved three dimensional objects. The problem given is a contextual problem and delivered online to 2 students in Bimbingan Belajar Gracia in 9th grade. The indicator is adapted from previous researchs and is using QCAI criteria. The result shows that one of two students is able to respond clearly and state verbal sentence to mathematical expresion. Both students are less able to communicate their mathematical thinking to others and haven’t been able to give argumentation to support their answer.Abstrak: Penelitian ini bertujuan untuk mendeskripsikan profil komunikasi matematis tulis siswa pembelajaran daring dalam memecahkan masalah bangun ruang sisi lengkung. Masalah yang diberikan merupakan soal cerita kontekstual yang terdiri dari satu butir soal dan diberikan secara daring kepada 2 siswa les daring kelas IX Bimbingan Belajar Gracia. Indikator yang dipakai merupakan adaptasi dari beberapa indikator dari penelitian terdahulu dan menggunakan kriteria QCAI. Hasil  penelitian menunjukkan satu dari dua siswa sudah dapat merespon dengan jelas dan menyatakan kalimat biasa menjadi kalimat matematika. Kedua siswa kurang dapat mengkomunikasikan gagasan secara efektif kepada orang lain, serta kedua siswa belum dapat memberikan argumen pendukung jawaban.
Profil Komunikasi Matematis Tulis Siswa Pembelajaran Daring dalam Menyelesaikan Masalah Bangun Ruang Sisi Lengkung Nia Cahyani; Makbul Muksar; Rustanto Rahardi
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 6, No 7: JULI 2021
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v6i7.14930

Abstract

Abstract: The purpose of this study is to describe the profile of online learning students’ written mathematical communication in solving problems about curved three dimensional objects. The problem given is a contextual problem and delivered online to 2 students in Bimbingan Belajar Gracia in 9th grade. The indicator is adapted from previous research and is using QCAI criteria. The result shows that one of two students can respond clearly and state verbal sentence to mathematical expression. Both students are less able to communicate their mathematical thinking to others and haven’t been able to give argumentation to support their answer.Abstrak: Penelitian ini bertujuan untuk mendeskripsikan profil komunikasi matematis tulis siswa pembelajaran daring dalam memecahkan masalah bangun ruang sisi lengkung. Masalah yang diberikan merupakan soal cerita kontekstual yang terdiri dari satu butir soal dan diberikan secara daring kepada 2 siswa les daring kelas IX Bimbingan Belajar Gracia. Indikator yang dipakai merupakan adaptasi dari beberapa indikator dari penelitian terdahulu dan menggunakan kriteria QCAI. Hasil penelitian menunjukkan satu dari dua siswa sudah dapat merespon dengan jelas dan menyatakan kalimat biasa menjadi kalimat matematika. Kedua siswa kurang dapat mengkomunikasikan gagasan secara efektif kepada orang lain, serta kedua siswa belum dapat memberikan argumen pendukung jawaban.
Representasi Matematis Siswa Tuna Rungu dalam Menyelesaikan Soal Cerita Matematika Elis Dwi Wulandari; Erry Hidayanto; Rustanto Rahardi
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 7: JULI 2019
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (757.209 KB) | DOI: 10.17977/jptpp.v4i7.12644

Abstract

Abstract: Mathematical representation is the way of communicating mathematical ideas and problems solutions. Communicating mathematical ideas requires external representation in the form of actions, verbal, symbolic, visual and real objects. This study aims to describe the form of representation of Deaf Students in solving mathematical story problems. The research was conducted by giving types of text questions as well as text and image questions to three DS at Banyuwangi State of Special Need High School. The results of student work analysis found that there are two types of mathematical representations that appear in solving story problems, namely verbal representation indicated by writing words, numbers, letters, sentences and oral and representation of mathematical expressions in the form of symbols and numbers. DS are able to representing, make mathematical symbols, explain in writing or sign language what they think are.Abstrak: Representasi matematis adalah cara mengomunikasikan ide-ide matematis maupun solusi permasalahan. Mengomunikasikan ide-ide matematis diperlukan representasi eksternal berbentuk tindakan, verbal, simbolik, visual dan objek nyata. Studi ini bertujuan untuk mendeskripsikan bentuk representasi siswa Tuna Rungu dalam menyelesaikan soal cerita matematika. Penelitian dilakukan dengan memberikan jenis soal teks serta soal teks dan gambar kepada tiga siswa TR di SMALBN Banyuwangi. Hasil analisis pekerjaan siswa ditemukan terdapat dua tipe bentuk representasi matematis yang muncul dalam menyelesaikan soal cerita, yaitu representasi verbal yang ditunjukkan dengan tulisan kata, angka, huruf, kalimat serta lisan dan representasi ekspresi matematis berupa simbol dan angka. Siswa TR mampu merepresentasikan, membuat simbol matematis, menjelaskan dengan tulisan maupun bahasa isyarat apa yang mereka pikirkan.
Penalaran Spasial Matematis Dimensi Persepsi dan Visualisasi Kelas VIII dalam Pemecahan Masalah Geometri Risna Zulfa Musriroh; Erry Hidayanto; Rustanto Rahardi
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 6, No 11: NOVEMBER 2021
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v6i11.15144

Abstract

Abstract: Mathematical spatial reasoning is needed to solve geometric problems. This study aims to describe the mathematical spatial reasoning of perception, namely describing objects when their position changes and visualization, which is describing the material that builds objects. The research subjects consisted of 6 students of class VIII including 2 students with highly capable, 2 students with moderately capable, and 2 students with lowly capable. The results showed that the ability of mathematical spatial perception and visualization in problem solving, namely: highly capable subjects can imagine and draw objects, moderately capable subjects can imagine objects but have not been able to draw objects correctly, and lowly capable subjects still have difficulty in describing objects.Abstrak: Penalaran spasial matematis diperlukan untuk memecahkan permasalahan geometri. Penelitian ini bertujuan untuk mendeskripsikan penalaran spasial matematis persepsi yaitu menggambarkan objek ketika posisinya berubah dan visualisasi yaitu menggambarkan materi yang membangun objek. Subjek penelitian terdiri dari enam siswa siswa kelas VIII, yaitu dua siswa berkemampuan tinggi, dua siswa berkemampuan sedang, dan dua siswa berkemampuan rendah. Hasil penelitian menunjukkan bahwa kemampuan persepsi dan visualisasi spasial matematis pada soal pemecahan masalah,  yaitu subjek berkemampuan tinggi dapat membayangkan dan menggambar objek, subjek berkemampuan sedang dapat membayangkan objek namun belum dapat menggambar objek secara tepat, dan subjek berkemampuan rendah masih kesulitan dalam menggambarkan objek.
Analisis Berpikir Kreatif Siswa Berkemampuan Matematika Rendah Dalam Menyelesaikan Ill-Structured Problem Maulana Al - Ghofiqi; Santi Irawati; Rustanto Rahardi
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 10: Oktober 2019
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v4i10.12883

Abstract

Abstract: The purpose of this study was to find out in detail the creative thinking of students with low mathematical abilities in solving ill-structured problems. This type of research is a case study, tconducted at SMPN 4 Waru (State Junior High School 4 Waru), Sidoarjo. 16 Students complete the ill-structured problem test, then subjects are chosen who have a level of creative thinking in the creative category and have low mathematical abilities. The results of the study showed students fulfilled the fluency aspect based on students' ability to provide at least two correct answers and were able to explain it. Flexibility aspects are fulfilled based on students' abilities in each answer written using different ideas. While the novelty aspect is not fulfilled because students do not give any unusual answers.Abstrak: Tujuan penelitian ini adalah untuk menganalisis berpikir kreatif siswa berkemampuan matematika rendah dalam menyelesaikan ill-structured problem. Jenis penelitian ini yaitu studi kasus, dilaksanakan di SMPN 4 Waru, Sidoarjo. 16 Siswa menyelesaikan tes ill-structured problem, selanjutnya dipilih subjek yang mempunyai level berpikir kreatif dalam kategori kreatif dan mempunyai kemampuan matematika rendah. Hasil penelitian menunjukkan siswa memenuhi aspek fluency berdasarkan kemampuan siswa dalam memberikan minimal dua jawaban benar serta mampu menjelaskannya. Aspek flexibility terpenuhi berdasarkan kemampuan siswa pada setiap jawaban yang dituliskan menggunakan ide yang berbeda, sedangkan aspek novelty tidak terpenuhi karena siswa tidak memberikan satu pun jawaban tidak biasa.
Berpikir Kritis Siswa Melalui Aktivitas Problem Posing dengan Konteks Masalah yang Tidak Masuk Akal Muhammad Rizaldi; Erry Hidayanto; Rustanto Rahardi
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 6, No 2: FEBRUARI 2021
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v6i2.14444

Abstract

Abstract: This study aims to describe students' critical thinking when peforming problem posing activities with the nonsense problem contexts. The result of this study shows that selected student in this study as subject reached all indicators of critical thinking. In the focus criteria, she was able to identify information from the given context. In the reason criteria, she was able to provide reasons why the given context does not make sense. In the inference criteria, she was able to pose new contexts and problems in accordance with the objectives of the initial problems so that the correct conclusions were obtained. In the situation criteria, she was able to connect relevant information, contexts and problems that she had created and the problem conclusion. In the clarity criteria, she wrote the solution of problem that she had posed correctly. In the overview criteria, she re-checked contexts and problems that she had posed, so that she got the problem solution which is systematic and complete.Abstrak: Tujuan penelitian ini untuk mendeskripsikan berpikir kritis siswa pada saat melakukan aktivitas problem posing  dengan konteks masalah yang tidak masuk akal. Hasil penelitian ini menunjukkan bahwa siswa yang dipilih pada penelitian ini sebagai subjek penelitian telah mencapai semua indikator berpikir kritis. Pada kriteria focus, dia dapat mengidentifikasi informasi dari konteks yang diberikan. Pada kriteria reason, dia dapat memberikan alasan mengapa konteks yang diberikan tidak masuk akal. Pada kriteria inference, dia dapat mengajukan konteks dan masalah baru yang berhubungan dengan tujuan masalah sehingga diperoleh kesimpulan yang benar. Pada kriteria situation, dia dapat menghubungkan informasi yang relevan, konteks dan masalah yang dia buat, dan kesimpulan dari permasalahan. Pada kriteria clarity, dia menuliskan solusi dari masalah yang ia ajukan dengan benar. Pada kriteria overview, dia memeriksa konteks dan masalah yang dia ajukan, sehingga dia mendapatkan solusi permasalahan yang sistematis dan lengkap.
Kreativitas dan Proses Berpikir Kreatif Siswa Field Independent Dalam Pemecahan Masalah Matematika Fauziyyah Alimuddin; Tjang Daniel Chandra; Rustanto Rahardi
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 11: NOVEMBER 2019
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v4i11.13037

Abstract

Abstract: This study aimed to describe field independentstudent’creative thinking process in problem solving mathematics. The participants of this study were the eighth grade students of MTs Negeri 1 Malang. Fluency, flexibility, and originality are there are three indicators indicating creativity. Preparation, incubation, illumination, and verification are four creative thinking process by Graham Wallas. Those two will be discussed brifely ini this study from field independent students.Abstrak: Tujuan penelitian ini adalah untuk mendeskripsikan proses berpikir kreatif siswa field independent dalam pemecahan masalah matematika. Penelitian ini dilaksanakan di kelas VIIIM MTs Negeri 1 Malang. Fluency,flexibility, dan originality adalah tiga indikator yang menggambarkan kreativitas. Persiapan, inkubasi, iluminasi, dan verifikasi adalah empat tahapan proses berpikir kreatif yang dikembangkan Graham Wallas. Dua hal ini akan dibahas dalam penelitian dimana subjek penelitiannya merupakan siswa field independent.
Kemampuan Siswa Field Dependent Level Multistructural dalam Menyelesaikan Soal Pythagoras dan Pemberian Scaffolding Siti Na’imah; I Made Sulandra; Rustanto Rahardi
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 3, No 6: JUNI 2018
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (640.658 KB) | DOI: 10.17977/jptpp.v3i6.11234

Abstract

Abstract: This study aimed to describe the ability of multilateral FD students to solve the problem of Pythagoras and its scaffolding. The data collection begins with GEFT and test 1. The subject's examination process is analyzed based on the SOLO taxonomy to see its level of ability. The results showed that the ability of multistructural level FD subjects could use some of the information provided for problem solving, but the answer given was not accurate. Scaffolding efforts to increase the level of FD students' ability from multistructural level to relational level consist of reviewing, restructuring, and developing contextual thinking. Abstrak: Penelitian ini bertujuan untuk mendeskripsikan kemampuan siswa FD level multistructural dalam menyelesaikan soal Pythagoras dan pemberian scaffolding. Pengumpulan data diawali dengan pemberian GEFT dan soal tes 1. Proses penyelesaian yang dilakukan subjek dianalisis berdasarkan taksonomi SOLO untuk melihat level kemampuannya. Hasil penelitian menunjukkan bahwa kemampuan subjek FD level multistructural dapat menggunakan beberapa informasi yang diberikan untuk menyelesaikan soal, namun jawaban yang diberikan kurang tepat. Upaya pemberian scaffolding untuk meningkatkan level kemampuan siswa FD dari level multistructural ke level relational terdiri dari reviewing, restructuring, dan developing contextual thinking.
Co-Authors Abdur Rahman As’ari Abdur Rohim, Abdur Agusman, Agusman Akhidayati, Ria Risyandani Alip Rahmawati Zahrotun Nisak Anik Rizka Rahmawati Anita Dewi Utami Ardan S, Muhammad Rey Ardan Saputra, Muhammad Rey Arnaningtyas Rofi'i Arwan Mhd. Said Astuti, Ririn Novia Cahyani, Nia Cahyaningtyas, Octavita Cholis Sa’dijah Christiyanto, Dana Yuli Dahliatul Hasanah Dana Yuli Christiyanto Destri Mega Arumanita Elis Dwi Wulandari Emanuel, Endrayana Putut Laksminto Erry Hidayanto Ewan Gunawan Faradila Nur Sabrina Fauziyyah Alimuddin HAFIIZH, MOCHAMMAD Herdiansyah, Adi Hery Susanto Hery Susanto Hijriani, Lailin Huda, Ristianur I Made Sulandra I Nengah Parta Indriati Nurul Hidayah Irianto, Savitri Oktavia Izzah Khairu Rahmah Janah, Miftakul Khalisa Naura Imanda Kusumaningtyas, Nopem Lailin Hijriani Lestary, Ratnah Lucky Tri Oktaviana Lutfika Zayyenu Zuhairini M Zainul Arifin Makbul Muksar Maulana Al - Ghofiqi Millenia Nugraha, Hermawan Septa Muhammad Rizaldi Nia Cahyani Novi Nurhayati Nugraha, Hermawan Septa Millenia Nursani Indah Pratiwi Octavita Cahyaningtyas Okviarini, Dewi Permadi, Hendro Prasetyo, Yudha Eka Purwanto Purwanto Purwanto Purwanto Putra, Zuhadur Ra'is Ariyono Qomarudin, Moch Hamzah Rachmat Wasqita Rahma Wahyu Rahmadani, Desi RIA ANGGRAINI Risna Zulfa Musriroh Rony, Zahara Tussoleha Saidah Ajilatun Nahdawiyah Sisworo Siti Na’imah Slamet . Subanji Subanji Sudirman Sudirman Sukoriyanto Susiswo Suwanto Suwanto Swasono Rahardjo Syaiful Hamzah Nasution Tjang Daniel Chandra Toto Nusantara Trianingsih Eni Lestari Widuri, Nabila Ekaputri Ziadatul Muslimah, Khilma Zuhadur Ra'is Ariyono Putra