p-Index From 2021 - 2026
12.91
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering IAES International Journal of Artificial Intelligence (IJ-AI) Dinamik Jurnal Ilmu Komputer dan Informasi Jurnal Masyarakat Informatika Jurnal Sains dan Teknologi Semantik Techno.Com: Jurnal Teknologi Informasi Jurnal Simetris TELKOMNIKA (Telecommunication Computing Electronics and Control) Bulletin of Electrical Engineering and Informatics Prosiding Seminar Nasional Sains Dan Teknologi Fakultas Teknik JUTI: Jurnal Ilmiah Teknologi Informasi Prosiding SNATIF Journal of ICT Research and Applications Teknika: Jurnal Sains dan Teknologi Jurnal Informatika dan Teknik Elektro Terapan Scientific Journal of Informatics JAIS (Journal of Applied Intelligent System) Proceeding SENDI_U Jurnal Ilmiah Dinamika Rekayasa (DINAREK) Proceeding of the Electrical Engineering Computer Science and Informatics Jurnal Teknologi dan Sistem Komputer Sinkron : Jurnal dan Penelitian Teknik Informatika SISFOTENIKA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control InComTech: Jurnal Telekomunikasi dan Komputer Jurnal Eksplora Informatika JOURNAL OF APPLIED INFORMATICS AND COMPUTING MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer English Language and Literature International Conference (ELLiC) Proceedings Infotekmesin Jurnal Mnemonic Abdimasku : Jurnal Pengabdian Masyarakat SKANIKA: Sistem Komputer dan Teknik Informatika Jurnal Teknik Informatika (JUTIF) Jurnal Program Kemitraan dan Pengabdian Kepada Masyarakat Journal of Soft Computing Exploration Advance Sustainable Science, Engineering and Technology (ASSET) Prosiding Seminar Nasional Hasil-hasil Penelitian dan Pengabdian Pada Masyarakat Prosiding Seminar Nasional Teknologi Informasi dan Bisnis Seminar Nasional Teknologi dan Multidisiplin Ilmu Jurnal Informatika Polinema (JIP) Jurnal Informatika: Jurnal Pengembangan IT Scientific Journal of Informatics LogicLink: Journal of Artificial Intelligence and Multimedia in Informatics Seminar Nasional Riset dan Teknologi (SEMNAS RISTEK) Advance Sustainable Science, Engineering and Technology (ASSET) INOVTEK Polbeng - Seri Informatika
Claim Missing Document
Check
Articles

Klasifikasi Citra Mengkudu Berdasarkan Perhitungan Jarak Piksel pada Algoritma K-Nearest Neighbour Irawan, Candra; Rachmawanto, Eko Hari; Atika Sari, Christy; Umah Nur, Raisul
Infotekmesin Vol 14 No 2 (2023): Infotekmesin: Juli, 2023
Publisher : P3M Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/infotekmesin.v14i2.1827

Abstract

Noni fruit is included in exported food commodities in Indonesia. The size of noni fruit, based on human vision, generally has varied shapes with distinctive textures and various patterns, so that the process of filtering fruit based on color and shape can be done in large quantities. In this study, K-Nearest Neighbor (KNN) has been implemented as a classification algorithm because it has advantages in classifying images and is resistant to noise. Noni imagery is a personal image taken from a noni garden in the morning and undergoes a background subtraction process. The imagery quality improvement technique uses the Hue Saturation Value (HSV) color feature and the Gray Level Co-Occurrence Matrix (GLCM) characteristic feature. KNN accuracy without features is lower than using HSV and GLCM features. From the experimental results, the highest accuracy was obtained using HSV-GLCM at K is 1 and d is 1, namely 95%, while the lowest accuracy was 55% using KNN only at K is 5 and d is 8.
SECURE TEXT ENCRYPTION FOR IOT COMMUNICATION USING AFFINE CIPHER AND DIFFIE-HELLMAN KEY DISTRIBUTION ON ARDUINO ATMEGA2560 IOT DEVICES Permana langgeng wicaksono ellwid putra; Sari, Christy Atika; Isinkaye, Folasade Olubusola
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 4 (2023): JUTIF Volume 4, Number 4, August 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.4.1129

Abstract

In an Internet of Things (IoT) system, devices connected to the system exchange data. The data contains sensitive information about the connected devices in the system so it needs to be protected. Without security, the data in the IoT system can be easily retrieved. One way to prevent this is by implementing cryptography. Cryptography is a technique for protecting information by using encryption so that only the sender and receiver can see the contents of the information contained therein. The implementation of cryptography on IoT devices must consider the capabilities of IoT devices because in general IoT devices have limited processing capabilities compared to computer devices. Therefore, the selection of encryption algorithms needs to be adjusted to the computational capabilities of IoT devices. In this research, the affine cipher cryptography algorithm and Diffie-hellman key distribution algorithm are applied to the arduino atmega2560 IoT device. The purpose of this research is to increase the security of the IoT system by implementing cryptography. The method used in this research involves setting up a sequence of encryption and decryption steps using an affine cipher and diffie-hellman algorithms. Furthermore, these algorithms were implemented on an Arduino IoT device. Finally, the decryption time based on the number of characters and the avalanche test were tested. The results showed that on average, Arduino can perform decryption using affine cipher and diffie-hellman algorithms in 0.07 milliseconds per character. The avalanche test produced an average percentage of 45.51% from five trials.
PNEUMONIA PREDICTION USING CONVOLUTIONAL NEURAL NETWORK Praskatama, Vincentius; Sari, Christy Atika; Rachmawanto, Eko Hari; Mohd Yaacob, Noorayisahbe
Jurnal Teknik Informatika (Jutif) Vol. 4 No. 5 (2023): JUTIF Volume 4, Number 5, October 2023
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2023.4.5.1353

Abstract

Pneumonia is condition which our lungs become inflamed due to infection from viruses, bacteria, or fungi. Pneumonia can affect anyone, both adults and children. Because of this, prevention of pneumonia is important. Prevention can be done by the process of maintain our immunity and lungs. In this study, had been done classify pneumonia based on X-ray images. This study using X-ray images dataset with total data is 5840 images in .jpg extensions. With a total number of images from training data is 5216 images and number of images from the test data is 624 images. The dataset that used in this research has 2 main classes, namely class normal and pneumonia. Normal class indicates that the X-Ray results are not detected with pneumonia. While the pneumonia class indicates that the processed X-Ray results are diagnose affected by pneumonia. The purpose of this research is building model that can be used to classify pneumonia based on X-Ray images. The classification process carried out in this study uses the Convolutional Neural Network method. The purpose of using the CNN method in the classification process of this research is because, in the process, CNN can extract features automatically and independently, so that the data provided does not need to be preprocessing first, but the data still produces good extraction features and can provide accurate classification results. The results from the testing process is carried out to run or perform in the pneumonia classification process, the CNN model built obtained a classification test accuracy of 87.82051205635071%.
A ROBUST AND IMPERCEPTIBLE FOR DIGITAL IMAGE ENCRYPTION USING CHACHA20 Nugroho, Widhi Bagus; Susanto, Ajib; Sari, Christy Atika; Rachmawanto, Eko Hari; Doheir, Mohamed
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 2 (2024): JUTIF Volume 5, Number 2, April 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.2.1470

Abstract

In the current era, data security is mandatory because it protects our personal data from being used by irresponsible people. The objective of this research is to show the robustness of the method we propose to encrypt images using the chacha20 algorithm which is included in the symmetric encryption cryptography technique and uses one key for both encryption and decryption processes. we use the encryption method by reading the bits from a digital image which is processed using the chacha20 algorithm to get the results of the digital image encryption. The results of this study indicate that the Chacha20 algorithm is secure to use when encrypting and decrypting digital images. The average MSE value generated by the chacha20 algorithm is 0.1232. The average PSNR value is 57.4784. The average value of UACI is 49.99%. The average value of NPCR is 99.602%. The test values were acquired by executing encryption and decryption processes on 5 distinct colour digital images with different size. Additionally, this study displays histograms for the original digital image, as well as for the encrypted and decrypted digital images, illustrating the pixel distribution in each. The histogram also serves as material for analysis of the success of the encryption and decryption processes in digital images.
VGG-16 ARCHITECTURE ON CNN FOR AMERICAN SIGN LANGUAGE CLASSIFICATION Meitantya, Mutiara Dolla; Sari, Christy Atika; Rachmawanto, Eko Hari; Ali, Rabei Raad
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 4 (2024): JUTIF Volume 5, Number 4, August 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.4.2160

Abstract

Every country has its sign language such as in Indonesia there are 2 types namely Indonesian Sign Language System called SIBI and BISINDO (Indonesian Sign Language). American Sign Language (ASL) is a sign language that is widely used in the world. In this research, the classification of American Sign Language (ASL) using the Convolutional Neural Network (CNN) method using VGG-16 architecture with Adam optimizer. The data used is 14000 ASL image data with 28 classes consisting of letters A to Z plus space and nothing with a division of 90% training data and 10% validation data. From this research, the overall accuracy is obtained with a value of 98% and the accuracy value of validation data evaluation is 89.07%.
CLASSIFICATION OF ORGANIC AND NON-ORGANIC WASTE WITH CNN-MOBILENET-V2 Oktayaessofa, Eqania; Sari, Christy Atika; Rachmawanto, Eko Hari; Yaacob, Noorayisahbe Mohd
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 4 (2024): JUTIF Volume 5, Number 4, August 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.4.2165

Abstract

Data from the Ministry of Environment and Forestry shows that the amount of organic and non-organic waste in 2023 has started to decline compared to the previous year. However, waste management in the central landfill is still not optimal. This is a problem for the community and the environment because it can cause pollution and disrupt public health around the disposal site. The reason for the difficulty of waste management at the landfill is that people still dispose of waste without separating it first. In addition, it is also due to a lack of public awareness and knowledge. One of the things that can be done to help overcome the problem of waste and its management is to develop an application that can help people understand the importance of waste selection and facilitate socialization in the community. For that, a model is needed that can classify waste based on its type with accurate accuracy. In this study, we propose a deep learning model, CNN with mobilenetV2 architecture, to classify organic and non-organic waste. This model uses a dataset consisting of 4380 images of organic and non-organic waste. Then 3 preprocessing stages were carried out, namely resize, normalization, and augmentation. From this process, data training was carried out and researchers obtained model evaluation results with 98.47% accuracy, 97% precision, 97% recall, and 97% F1 Score evaluation results. These results show that the proposed model is categorized as excellent.
Enhancing MPEG-1 Video Quality Using Discrete Wavelet Transform (DWT) with Coefficient Factor and Gamma Adjustment Krismawan, Andi Danang; Susanto, Ajib; Rachmawanto, Eko Hari; Muslih, Muslih; Sari, Christy Atika; Ali, Rabei Raad
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4422

Abstract

Low-quality video caused by compression artifacts, noise, and loss of detail remains a significant challenge in video processing, affecting applications in streaming, surveillance, and medical imaging. Existing enhancement techniques often struggle with excessive noise amplification or high computational complexity, making them inefficient for real-time applications. This study proposes an improved video enhancement method using Discrete Wavelet Transform (DWT) with optimized coefficient factor and gamma adjustment. DWT is a mathematical approach that decomposes video frames into frequency subbands, enabling selective enhancement of important details. To analyze the impact of different wavelets, this study evaluates Coif5, db1, sym4, and sym8 wavelets. The sym8 wavelet, known for its high symmetry and ability to minimize artifacts, achieves the best results in preserving fine details and structural integrity. The coefficient factor is dynamically adjusted to sharpen details while preventing noise amplification, and gamma adjustment is applied to optimize brightness and contrast. The proposed method was evaluated using Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index (SSIM). Experimental results show that sym8 wavelet with gamma 0.7 and coefficient factor 0.3 provides the best balance, achieving an MSE of 0.062, a PSNR of 12.050 dB, and an SSIM of 0.674, outperforming Coif5, db1, and sym4 wavelets. The results indicate that wavelet selection significantly impacts video enhancement performance, with sym8 providing superior contrast enhancement and noise suppression. This study contributes to real-time video processing and AI-based applications, ensuring enhanced visual quality with minimal computational overhead.
Securing Medical Images Using Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD) for Image Steganography Pramudya, Elkaf Rahmawan; Handoko, L. Budi; Harjo, Budi; Sani, Ramadhan Rakhmat; Sari, Christy Atika; Shidik, Guruh Fajar; Andono, Pulung Nurtantio; Sarker, Md. Kamruzzaman
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4426

Abstract

Steganography is a technique for embedding secret information into digital media, such as medical images, without significantly affecting their visual quality. The primary challenge in medical image steganography is preserving the quality of the cover image while ensuring robustness against distortions such as compression or data manipulation attacks, which may impact diagnostic accuracy. This study proposes an enhanced steganographic method based on Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD) to improve the security and robustness of medical image embedding. DWT decomposes the medical image into four frequency sub-bands (LL, LH, HL, HH), while SVD is applied to embed the secret image while maintaining essential medical features. Experimental results show that the proposed method achieves a PSNR value of up to 78 dB and an SSIM value approaching 1, indicating that the stego image quality is nearly identical to the original cover image. Compared to previous DCT-SVD and IWT-SVD-based approaches, the DWT-SVD method offers superior robustness and imperceptibility, particularly in preserving image quality in complex-textured medical images. This method contributes to enhancing data security in telemedicine and AI-based medical imaging applications by ensuring that sensitive medical data remains protected while preserving image integrity for diagnostic use.
Hiragana Character Classification Using Convolutional Neural Networks Methods based on Adam, SGD, and RMSProps Optimizer Mulyono, Ibnu Utomo Wahyu; Kusumawati, Yupie; Susanto, Ajib; Sari, Christy Atika; Islam, Hussain Md Mehedul; Doheir, Mohamed
Scientific Journal of Informatics Vol. 11 No. 2: May 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i2.2313

Abstract

Purpose: Hiragana image classification poses a significant challenge within the realms of image processing and machine learning. Despite advances, achieving high accuracy in Hiragana character recognition remains elusive. In response, this research attempts to enhance recognition precision through the utilization of a Convolutional Neural Network (CNN). Specifically, the study explores the efficacy of three distinct optimizers like Adam, Stochastic Gradient Descent with Momentum (SGDM), and RMSProp in improving Hiragana character recognition accuracy. Methods: This research adopts a systematic approach to evaluate the performance of a Convolutional Neural Network (CNN) in the context of Hiragana character recognition. A meticulously prepared dataset is utilized for in-depth testing, ensuring robustness and reliability in the analysis. The study focuses on assessing the effectiveness of three prominent optimization methods: Stochastic Gradient Descent (SGD), RMSProp, and Adam. Result: The results of the model performance evaluation show that the highest accuracy was obtained from the RMSP optimizer with an F1-Score reaching 99.70%, while the highest overall accuracy was 99.87% with the Adam optimizer. The analysis is carried out by considering important metrics such as precision, recall, and F1-Score for each optimizer. Novelty: The performance results of the developed model are compared with previous studies, confirming the effectiveness of the proposed approach. Overall, this research makes an important contribution to Hiragana character recognition, by emphasizing the importance of choosing the right optimizer in improving the performance of image classification models.
Hybrid Quantum Representation and Hilbert Scrambling for Robust Image Watermarking Sari, Christy Atika; Abdussalam, Abdussalam; Rachmawanto, Eko Hari; Islam, Hussain Md Mehedul
Scientific Journal of Informatics Vol. 11 No. 4: November 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i4.10140

Abstract

Purpose: This work aims to apply Quantum Hilbert Scrambling to enhance the security and integrity of image watermarking without affecting visual quality degradation. Further conception of the surveyed methods could result in a very good solution to conventional methods of watermarking in solving some problems of digital image security and integrity with new concepts of quantum computing. Methods: The paper reviews Quantum Hilbert Scrambling, whose computational complexity is . The process involves encoding the image into a quantum state, permuting qubits by the Hilbert curve, and embedding a watermark using quantum gates. Result: The quantitative performance evaluation metrics, like Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM), have shown high Peak Signal to Noise Ratio (PSNR) values from 56.13 dB to 57.87 dB and Structural Similarity Index (SSIM) from 0.9985 to 0.9990, correspondingly. This justifies the fact that the quality degradation is very slight and the fine details of the structure are well maintained. Novelty: The proposed method uniquely integrates quantum computing with traditional watermarking steps for a secure and effective approach in digital watermarking. Further development should focus on improving the quantum circuit regarding computation efficiency, extending the applicability of the method to a wide range of images, and various situations in watermarking, and finding hybrid approaches by combining quantum and classical approaches towards better performance and scalability.
Co-Authors AA Sudharmawan, AA Abdussalam Abdussalam Abdussalam Abdussalam, Abdussalam Abiyyi, Ryandhika Bintang Agustina, Feri Ahmad Salafuddin Ajib Susanto Akbar, Fadhilah Aditya Akbar, Ilham Januar Alfany, Fauzan Maulana Ali, Rabei Raad Alifia Salwa Salsabila Alvian Ideastari, Nukat Alvin Faiz Kurniawan Anak Agung Gede Sugianthara Andi Danang Krismawan Anggraeny, Tiara Annisa Sulistyaningsih Anny Yuniarti Antonius Erick Handoyo Ardy, Rizky Damara Ardyani, Salma Shafira Fatya Arfian, Aldi Azmi Ariska, Ratih Aryanta, Muhammad Syifa Aryaputra, Firman Naufal Astuti, Yani Parti Auni, Amelia Gizzela Sheehan Azzahra, Fidela Bambang Sugiarto Briliantino Abhista Prabandanu Budi Harjo Cahaya Jatmoko Cahyo, Nur Ryan Dwi Candra Irawan Candra Irawan Chaerul Umam Chaerul Umam Cinantya Paramita D.R.I.M. Setiadi Danang Krismawan, Andi Danang Wahyu Utomo Danar Bayu Adi Saputra Danu Hartanto Daurat Sinaga Daurat Sinaga De Rosal Ignatius Moses Setiadi Desi Purwanti Kusumaningrum Desi Purwanti Kusumaningrum Desi Purwanti Kusumaningrum Didik Hermanto Doheir, Mohamed Doheir, Mohamed Doheir, Mohamed A S Dwi Puji Prabowo Edi Faisal Egia Rosi Subhiyakto Egia Rosi Subhiyakto Eko Hari Rachmanto Eko Hari Rachmawanto Eko Septyasari Elkaf Rahmawan Pramudya Ericsson Dhimas Niagara Erika Devi Udayanti Erlin Dolphina Erna Daniati Erna Zuni Astuti Ery Mintorini Etika Kartikadarma Farrel Athaillah Putra Fidela Azzahra Florentina Esti Nilawati Florentina Esti Nilawati Florentina Esti Nilawati Folasade Olubusola Isinkaye Folasade Olubusola Isinkaye Giovani Ardiansyah Gumelar, Rizky Syah Guruh Fajar Shidik Gusta, Muhammad Bima Hadi, Heru Pramono Haqikal, Hafidz Hartono, Matthew Raymond Haryanto, Christanto Antonius Haryanto, Christanto Antonius Hasbi, Hanif Maulana Hayu Wikan Kinasih Heru Lestiawan Heru Lestiawan Himawan, Reyshano Adhyarta Hyperastuty, Agoes Santika Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ibnu Utomo Wahyu Mulyono Ifan Rizqa Ihya Ulumuddin, Dimas Irawan Ikhsanuddin, Rohmatulloh Muhamad Imam Prayogo Pujiono Inzaghi, Reza Bayu Ahmad Isinkaye, Folasade Olubusola Islam, Hussain Md Mehedul Istiqomah, Annisa Ayu Ivan Stepheng Kamila, Izza Putri Kas Raygaputra Ilaga Krismawan, Andi Danang Kumala, Raffa Adhi Kurniawan, Nicholas Alfandhy Kusuma, Edi Jaya Kusuma, Mohammad Roni Kusumawati, Yupie L. Budi Handoko Laksana, Deddy Award Widya Lalang Erawan Latifa, Anidya Nur Liya Umaroh Liya Umaroh, Liya Lucky Arif Rahman Hakim Mabina, Ibnu Farid Maulana Malik Ibrahim Al-Ghiffary Md Kamruzzaman Sarker Md Kamruzzaman Sarker Meitantya, Mutiara Dolla Mohamed Doheir Mohammad Rizal, Mohammad Mohd Yaacob, Noorayisahbe Muchamad Akbar Nurul Adzan Muhammad Rikzam Kamal Mulyono, Ibnu Utomo Wahyu Mulyono, Ibnu Utomo Wahyu Munis Zulhusni Musfiqur Rahman Sazal Muslih Muslih Nabila, Qotrunnada Neni Kurniawati Ningrum, Amanda Prawita Nisa, Yuha Aulia Noor Ageng Setiyanto Noor Ageng Setiyanto, Noor Ageng Noorayisahbe Mohd Yacoob Nova Rijati Nugroho, Widhi Bagus Nur Ryan Dwi Cahyo Oktaridha, Harwinanda Oktayaessofa, Eqania Ozagastra Caluella Prambudi Parti Astuti, Yani Parti Astuti, Yani parti astuti, yani Parti Astuti1, Yani Parti Astuti1, Yani Permana langgeng wicaksono ellwid putra Pradana, Luthfiyana Hamidah Sherly Pradana, Rizky Putra Pradnyatama, Mehta Praskatama, Vincentius Pratama, Zudha Pratiwi, Saniya Rahma Prayogi, Arditya Pulung Nurtantio Andono Purwanto Purwanto Puspa, Silfi Andriana Putri Mega Arum Wijayanti Rabei Raad Ali Rahmalan, Hidayah Raisul Umah Nur Ramadhan Rakhmat Sani Ratih Ariska Robert Setyawan Sabilillah, Ferris Tita Saifullah, Zidan Salma Shafira Fatya Ardyani Salsabila, Alifia Salwa Sania, Wulida Rizki Santoso, Bagus Raffi Saputra, Danar Bayu Adi Sari, Wellia Shinta Sari Shinta Sarker, Md Kamruzzaman Sarker, Md. Kamruzzaman Setiarso, Ichwan Setiawan, Fachruddin Ari Shelomita, Viki Ari Sinaga, Daurat Sinaga, Daurat Sinaga, Daurat Sofyan, Ega Adiasa Solichul Huda, Solichul Sudibyo, Usman Sudibyo, Usman Sudibyo, Usman Sugianto, Castaka Agus Sumarni Adi, Sumarni Suprayogi Suprayogi Suprayogi Suprayogi Sutrisno, Hendra Syabilla, Mutiara Syafira, Zahra Ghina Tan Samuel Permana Tan Samuel Permana Tiara Anggraeny Titien Suhartini Sukamto Umah Nur, Raisul Umaroh, Liya Umaroh, Liya Utomo, Danang Wahyu Velarati, Khoirizqi Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Wellia Shinta Sari Wintaka, Aristides Bima Yaacob, Noorayisahbe Mohd Yani Parti Astuti Yupie Kusumawati Zaenal Arifin Zulhusni, Munis