Claim Missing Document
Check
Articles

Implementasi Algoritma Support Vector Machine Untuk Analisa Sentimen Data Ulasan Aplikasi Pinjaman Online di Google Play Store: Implementation of Support Vector Machine Algorithm for Sentiment Analysis of Online Loan Application Review Data on Google Play Store Iqbal, Muhammad; Afdal, M; Novita, Rice
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 4 (2024): MALCOM October 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i4.1435

Abstract

Pinjaman online (pinjol) banyak menuai pro dan kontra karena aksesnya yang mudah dan iklannya tersebar di media sosial. Penyelenggara pinjaman daring juga seringkali menggunakan metode penagihan yang mengganggu, memberlakukan bunga yang tinggi, dan menetapkan jangka waktu pembayaran yang pendek, terutama pada pinjaman daring ilegal. Karenanya, penelitian ini melakukan analisis sentimen pada lima aplikasi pinjol, yaitu Kredivo, Easycash, Rupiah Cepat, Kredit Pintar, dan Ada Pundi. Data ulasan aplikasi diambil dari Google Play Store menggunakan teknik scraping. Kemudian, pelabelan sentimen dilakukan secara otomatis menggunakan kamus sentimen Bahasa Indonesia (Inset). Hasil pelabelan menunjukkan bahwa semua aplikasi pinjol mayoritas memiliki sentimen negatif. Kredivo menjadi aplikasi dengan jumlah sentimen positif terbanyak (46%), sementara itu Easycash memiliki sentimen negatif terbanyak (65%). Data yang di labeli kemudian digunakan untuk pemodelan klasifikasi dengan algoritma Support Vector Machine (SVM). Hasil evaluasi menghasilkan algoritma SVM mempunyai kinerja yang cukup baik dengan rata-rata akurasi sebesar 72%, presisi 76%, dan recall 85%. Namun secara khusus, SVM sangat baik melakukan klasifikasi sentimen pada aplikasi Kredit Pintar dengan akurasi sebesar 83%. Analisis visualisasi menggunakan word cloud juga dilakukan untuk memahami konteks ulasan pengguna aplikasi pinjol. Hasil pengamatan menunjukkan bahwa pengguna hampir selalu membahas tentang limit pinjaman disetiap sentimen pada kelima aplikasi.
Penerapan Algoritma Artificial Neural Network dan Economic Order Quantity dalam Memprediksi Persediaan Pengendalian BBM Ula, Walid Alma; Afdal, M; Zarnelly, Zarnelly; Permana, Inggih
Journal of Computer System and Informatics (JoSYC) Vol 5 No 2 (2024): February 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v5i2.4916

Abstract

Motor vehicle production in Indonesia increases every year along with increasing demand for fuel as a raw material. Generally, gas stations carry out the process of ordering fuel from Dempo on an irregular basis, the frequency of orders does not have a certain time, orders depend on sales transactions and the amount of fuel inventory available depends on the fuel in storage. Regarding prediction and control of fuel supplies, the risk at gas stations is that the volume of fuel received is different from that ordered. It is suspected that tank trucks carrying fuel during delivery from the depot to gas stations tend to experience evaporation in the tank (loses), so that the fuel quantity decreases. Requests for fuel filling are only based on monitoring without any special calculations resulting in stock being maintained and not covering consumer demand. This research is to analyze the Artificial Neural Network algorithm in predicting fuel, and determine inventory control using Economic Order Quantity. The research was conducted using data from November 2020 - October 2023. The data was processed using the ANN algorithm using Google Colab, and continued with EOQ using Microsoft Excel. The ANN parameters are 1 hidden layer with 100 units, Adam optimizer, learning rate 0.001, batch size 8 and epoch 200. Pertalite ANN test results are MSE 248852593.81 and MAE 12749.45, while Pertamax Turbo MSE 803842.94 and MAE 672, 74 provides predictions for November and December of 11,1436.82 L and 11,1960.83 L and Pertamax Turbo of 3,782.46 L and 3,660.70 L. Furthermore, in 2023 the fuel EOQ of Pertalite and Pertamax Turbo will be 8,445 L and 5,261 L, Safety Stock 3,516 L and 1,064 L, Maximum Inventory 6,042 L and 5,153 L, Re order point 2,403 L and 108 L, Order frequency 149 times and 6 times with Total Inventory Cost Rp. 178,830,302 and Rp. 7,700,459.
Perbandingan Performa Algoritma NBC, C4.5, dan KNN dalam Analisis Sentimen Masyarakat terhadap Krisis Petani Muda pada Media Sosial Facebook Nurkholis, Nurkholis; Permana, Inggih; Salisah, Febi Nur; Mustakim, Mustakim; Afdal, M
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6082

Abstract

In Indonesia, young farmers face various challenges and crises that hinder the growth and sustainability of the agricultural sector. They face obstacles such as lack of access to capital, limited technology, climate change, and low selling prices for their crops. In addition, they also often face problems in obtaining accurate and relevant information in an effort to facilitate better decision-making in agricultural businesses, so that the interest of young people today to become farmers is decreasing. The study aims to Compare the Performance of NBC, C4.5, and KNN Algorithms in the Analysis of Public Sentiment towards the Young Farmer Crisis on Facebook Social Media. The application of the K-Fold Cross Validation method is (K = 10). Sentiment analysis is carried out with 3 labels (positive, negative, and neutral). The data used in making the classification model (data from preprocessing the stemming column) using (Google Colab) amounted to 4,878 data with Positive sentiment of 43.13% (2,104), Neutral 39.59% (1,931), Negative 17.28% (843) from the initial data without nested comments, which is 4,981 and the total number of Facebook data is 2,900 likes, 6,700 comments, and 3.3 million viewers. The accuracy of the NBC algorithm is 57.32%, the C4.5 algorithm is 98.42%, and the KNN algorithm (K = 19) is 97.33%. It can be concluded that the results of the comparison of the performance of the three algorithms using (Rapidminer10.3), the C4.5 algorithm gets a higher accuracy of 98.42% and is superior because it produces a decision tree.
Analisis Sentimen Tanggapan Publik di Twitter Terkait Program Kerja Makan Siang Gratis Prabowo–Gibran Menggunakan Algoritma Naïve Bayes Classifier dan Support Vector Machine Ramadhani, Annisa; Permana, Inggih; Afdal, M; Fronita, Mona
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6188

Abstract

Indonesia faces a serious challenge related to stunting, with rates reaching 21% in 2024, although this represents a decrease from 24% in 2021. In response, the government has launched various programs to address this issue, including nutrition education, health check-ups for pregnant women, and supplementary food provisions. Amid these efforts, the proposed free lunch program aims to improve nutritional quality for children and pregnant women. However, this program has sparked controversy over the required budget, estimated at IDR 450 trillion, which could impact the national budget balance and lead to inflation.This study analyzes public sentiment toward the free lunch program using the Naïve Bayes Classifier (NBC) and Support Vector Machine (SVM) algorithms. An analysis of 1,028 tweets revealed that negative sentiment predominates at 44.84%, followed by positive sentiment (32.39%) and neutral sentiment (22.76%). SVM outperformed NBC with an accuracy of 75.39%, compared to NBC's 68.97%. The findings provide important insights into public perceptions of the program and highlight the need for further research to improve sentiment analysis methodologies.
Analisis Sentimen Traveloka Berdasarkan Ulasan Google Play Store Menggunakan Algoritma Support Vector Machine dan Random Forest Rohimah, Siti; Afdal, M; Mustakim, Mustakim; Novita, Rice
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6300

Abstract

The internet has become a key element in supporting technological and information advances in various sectors of human activity. In the trade and tourism sector, the Traveloka application is the favorite choice of Indonesian people. Reviews or reviews from users play an important role for the Company to understand the level of customer satisfaction. However, currently there are several users who give high ratings but contain negative reviews. Based on these problems, this research aims to understand more deeply user opinions, so that they can be used to improve services and features as well as test and compare the accuracy of the two algorithms in classifying user sentiment. In this research, the Support Vector Machine and Random Forest classification methods were used. The research results show that Random Forest has superior and stable performance compared to SVM, with higher average accuracy for most features, such as Traveloka (71% & 67%) and Airplanes (75% & 74%). Evaluation with k-fold cross validation supports these results, with higher average Random Forest accuracy on features such as Traveloka (70% & 66%) and Airplanes (75% & 74%).
Implementasi Metode Holt-Winters dan FP-Growth dalam Melakukan Peramalan Stok Barang Pada Swalayan Berdasarkan Pola Asosiasi Loka, Septi Kenia Pita; Afdal, M; Novita, Rice; Mustakim, Mustakim
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6305

Abstract

At present, competition in the business world is extremely fierce, particularly in the convenience store sector. The development of retail trade is progressing rapidly, accompanied by the emergence of many small markets and online shops. This situation encourages store owners to make wiser decisions, such as managing stock replenishment. If overlooked, this matter way hinder employees from locating the necessary items, thereby increasing the potential risk of goods expiring or being damage before they are sold. Therefore, store owners need to understand consumer behavior and shopping habits to assist iin stock management. Based on this issue, the research aims to analyze consumer purchasing patterns and optimize inventory stock. The result of this experiment identified two best rules, namely biscuit and consumption/food, with a confidence of 53,61%, a support of 15,57%, and a lift ratio of 1,116 the error measurement MAPE shows a value of 6,79 using alpha, beta and gamma values of 0,1. The total predicted stock in 52,086 with an actual value of 72,275, which is close to actual value of data prior to the significant observed in the last three months.
Analisa Manejemen Risiko Sistem Informasi Penjualan Menggunakan Metode Failure Mode Effects and Analysis (FMEA) Syahri, Alfi; -, Megawati; Afdal, M; Nur Salisah, Febi
JATISI Vol 11 No 4 (2024): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)
Publisher : Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/jatisi.v11i4.8438

Abstract

Teknologi informasi telah banyak diterapkan di berbagai perusahaan, salah satunya PT XYZ yang telah menerapkan sistem informasi penjualan atau BEI sebagai otomatisasi proses bisnis perusahaan. Namun pada praktiknya manajemen risiko sistem informasi BEI belum diterapkan dengan baik, masih terdapat kendala dan insiden pengelolaan. Penelitian ini bertujuan untuk menganalisis manajemen risiko sistem informasi ISX dengan menggunakan framework FMEA (Failure Mode Effects and Analysis). FMEA dapat mengidentifikasi risiko berdasarkan tingkat keparahan suatu kejadian, seberapa sering kejadian tersebut terjadi, dan seberapa tinggi tingkat deteksinya. Dari variabel-variabel tersebut akan dihasilkan Risk Priority Number (RPN) yang dapat menentukan prioritas risiko atau permasalahan yang paling kritis. Hasil penelitian ini menunjukkan bahwa sistem ISX mempunyai 2 risiko dengan tingkat sangat tinggi, 1 risiko dengan tingkat tinggi, 1 risiko dengan tingkat menengah, 21 risiko dengan tingkat rendah, dan 5 risiko dengan tingkat sangat rendah. Risiko yang berada pada tingkat yang sangat tinggi dan tinggi merupakan risiko yang diprioritaskan dan perlu mendapatkan tindakan dan pengendalian risiko.
Prediksi Produksi Kelapa Sawit Menggunakan Algoritma Support Vector Regression dan Recurrent Neural Network Alfakhri, Rezky; Permana, Inggih; Novita, Rice; Afdal, M
Building of Informatics, Technology and Science (BITS) Vol 6 No 3 (2024): December 2024
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v6i3.6441

Abstract

Oil palm is one of the important plantation crops and a leading commodity in Indonesia. PT. XYZ is a company engaged in receiving Fresh Fruit Bunches (FFB) to be processed into Crude Palm Oil (CPO) and Palm Kernel (PK). So far, the company has conducted statistical analysis with a correction value of 5% - 12% on the production results each month in targeting production results. However, this method is still lacking, because it uses manual calculations and considers estimates from personal experience. Therefore, this research proposes a data mining technique with Support Vector Regression (SVR) and Recurrent Neural Network (RNN) algorithms to predict production output precisely. In this study, testing was carried out on SVR hyperparameters, namely Kernel, C, Gamma, and Epsilon. While in RNN, testing is carried out on the optimizer, and the learning rate. In addition, the window size is also determined through a series of experiments, namely 3, 5, and 7. The comparison results show that the RNN model outperforms SVR with an RMSE value of 0.0928, MAPE of 14.32%, and R2 of 0.6164. The RNN model was then implemented to predict the next 3-month period. The prediction results show that there will be a significant increase in production in the first month, then a slight decrease in the second month, and an increase again in the third month.
Segmentasi Pelanggan Menggunakan Fuzzy C-Means dan FP-Growth Berdasarkan Model LRFM untuk Rekomendasi Produk Rahmah, Astriana; Afdal, M
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 3 (2024): Juli 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i3.7737

Abstract

Bazmart Pelalawan is a part of the National Zakat Agency (BAZNAS) program in Pelalawan Regency, which has implemented strategies to retain customers. However, these strategies have not yet succeeded in fully understanding customer characteristics, resulting in a decline in customer trust and their willingness to shop again. Additionally, Bazmart lacks proper guidelines for offering products that meet customer needs. This research aims to enhance product recommendations by integrating LRFM analysis into data mining techniques. The parameters considered include customer LRFM values, customer segmentation, and products frequently purchased together over a year of transaction data. Fuzzy C-Means and FP-Growth algorithms were used for segmentation and association analysis. The segmentation results identified two customer clusters with a Davies-Bouldin Index (DBI) value of 0.628, indicating good cluster quality. In the association analysis, a minimum support (minsup) of 30% and a minimum confidence (mincof) of 70% were used, resulting in 8 rules for cluster 1 and 17 rules for cluster 2. From the two association pattern results, the highest rules were obtained, namely in Drinks and Snacks and Bread with a support value of 0.426 and a confidence value of 0.926 resulting in a value of 0.394. These rules provide insights that Bazmart Pelalawan can use to develop more effective and targeted direct marketing strategies for each customer cluster. Thus, this research is expected to help Bazmart Pelalawan better understand customer characteristics and improve customer loyalty through more targeted product recommendations.
Penerapan Algoritma Fuzzy C-Means untuk Klasterisasi Customer Lifetime Value menggunakan Model LRFMD Ramadhani, Indah; Afdal, M; Mustakim, Mustakim; Zarnelly, Zarnelly
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 3 (2024): Juli 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i3.7613

Abstract

PT X is a retail company engaged in printing. The company has not differentiated between information about profitable and unprofitable customers for the company. Transaction data is only used as profit and loss information so they do not know the characteristics of the customers they have. In addition, the lack of extensive services in the merchandise category is one of the reasons the company's revenue has not reached the predetermined target. Currently, the company has opened additional services in the merchandise field. This research aims to identify customer segmentation as well as analyze the characteristics and provide a strategy proposal that will be submitted to PT. X. Customer loyalty and characteristics have a significant impact on a company. To identify customers who show loyalty to the company, the Fuzzy C-Means algorithm is used to perform clustering, using the Davies Bouldin Index (DBI) to evaluate the clustering results. The model used is in accordance with the principles of Length, Recency, Frequency, Monetary and Diversity (LRFMD) to categorize purchasing patterns. By analyzing LRFMD variables, it is possible to identify customers who are loyal to the company and those who are not. This research produces 6 clusters with the best cluster or supestar customer in cluster 6, the second best value customer or golden customer is cluster 2, the average value customer or typical customer is cluster 4 and 5 and the lowest cluster or dormant customer is in cluster 3.
Co-Authors - Mardalena, - A. Adriani AA Sudharmawan, AA Addion Nizori ADRIANI ADRIANI Adriani Adriani Afandi, Rival Aini, Delvi Nur Al-Yasir, Al-Yasir Alfakhri, Rezky Alfian, Zhevin Andaranti, Arifah Fadhila Andriyani, Dwi Ratna Angraini Angraini Anisa Putri Annisa Ramadhani Anofrizen Anofrizen Arif Marsal Arrazak, Fadlan Auliani, Sephia Nazwa Ayu Lestari Silaban Ayu Silaban Azzahra, Aura Basri, Faishal Khairi Darlis Darlis Darlis Darlis, Darlis Eki Saputra F. Safiesza, Qhairani Frilla Fauzan Ramadhan Febi Nur Salisah Filawati Filawati FITRY TAFZI Hendri, Desvita Heni Suryani Husaini, Fahri Husna, Nur Alfa Indah Lestari, Indah Indriyani Indriyani Indriyani Inggih Permana Intan, Sofia Fulvi Irwanda, Mahyuda Jazman, Muhammad Kusuma, Gathot Hanyokro Lisani Lisna, Lisna Loka, Septi Kenia Pita Luber, Yusuf Amirullah Mawaddah, Zuriatul Megawati - Miftahul Jannah Mochammad Imron Awalludin Mona Fronita, Mona Muhammad Ambar Islahuddin Munandar, Darwin Munzir, Medyantiwi Rahmawita Mustakim Mustakim Mustakim Mutia, Risma Muttakin, Fitriani Nabillah, Putri Nasution, Nur Shabrina Nelwida Nelwida Nurfadilla, Nadia Nurkholis Nurkholis Pertiwi, Tata Ayunita Priady, Muhamad Ilham Prizky Nanda Mawaddah Putra, Moh Azlan Shah Putri, Celine Mutiara Putri, Suci Maharani Rahmah, Astriana Rahmawita, Medyantiwi Ramadani, Faradila Ramadhani, Indah Rayean, Rival Valentino Remon Lapisa Rice Novita Rozanda, Nesdi Evrilyan Saad, Wan Zuhainis Sabillah, Dian Ayu Saitul Fakhri Sari, Gusmelia Puspita Sarwo Edy Wibowo Siti Monalisa Siti Rohimah Suhessy Syarif Suhessy Syarif, Suhessy Suryadi Suryadi Suryadi Suryadi Suryani, Heni Susanti, Pingki Muliya Suseno, Rahayu Syafi'i, Azis Syafrizal Syafrizal Syahri, Alfi Syaifullah Syaifullah T. T. Poy Teja Kaswari Tri Astuti Triningsih, Elsa Tshamaroh, Muthia Ula, Walid Alma Wibisono, Yudistira Arya Wilrose, Anandeanivha Winnugroho Wiratman, Manfaluthy Hakim, Tiara Aninditha, Aru W. Sudoyo, Joedo Prihartono Y Zaharanova Yuda, Afi Ghufran Yulianti, Nelvi Yun Alwi Yurleni Yurleni Yusuf Amirullah Luber Zarnelly Zarnelly Zarqani, Zarqani