Claim Missing Document
Check
Articles

Comparative Analysis of SVM and NB Algorithms in Evaluating Public Sentiment on Supreme Court Rulings Maulidiana, Putri Dwi Rahayu; Vitianingsih, Anik Vega; Kacung, Slamet; Maukar, Anastasia Lidya; Hermansyah, David
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 13, No 2 (2024): JULY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i2.2116

Abstract

The legal events that happened to Ferdy Sambo and the Supreme Court’s decision in the cassation triggered emotional reactions and various opinions among the public, especially on social media sites such as Xapps. Some comments reflect people’s concerns about fairness in the legal system. They doubted the integrity of legal institutions or believed that decisions were unfair or in line with vested interests. This research aims to analyze public perceptions of Supreme Court decisions. The research process includes data collection, preprocessing, labeling, weighting, classification using Support Vector Machine and Naïve Bayes, and performance evaluation using a confusion matrix. A dataset of 624 was taken from X apps using the Twitter scraping technique. The lexicon method is used for data labeling, dividing the data into positive, negative, and neutral classes. The analysis results show 46 tweets categorized as positive sentiment, 133 tweets categorized as negative sentiment, and 422 tweets categorized as neutral sentiment. Based on testing with a data ratio of 80:20, both SVM and NB methods show good performance. The SVM criteria showed an accuracy of 0.84, precision of 0.61, recall of 0.78, and f1-score of 0.66, while the NB criteria showed an accuracy of 0.73, precision of 0.37, recall of 0.57, and f1-score of 0.35.
Implementation of Long Short-Term Memory Network for Predicting The Cocoa Crop Yield Maukar, Anastasia Lidya; Arrosyadi, Laesa Qotrun Nada
Jurnal Sistem Teknik Industri Vol. 26 No. 2 (2024): JSTI Volume 26 Number 2 July 2024
Publisher : TALENTA Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32734/jsti.v26i2.15359

Abstract

Forecasting models with high accuracy become more important during uncertain conditions, such as climate change, that could have a high effect. The forecast model's accuracy in predicting cocoa crop yield must be high to determine decision-making in management. Seven different potential predictor variables have been analyzed in this research to see the influence of cocoa crop yield. Using a scatter plot diagram, six of seven variables, relative humidity, maximum temperature, minimum temperature, evapotranspiration, rainfall, and soil moisture, are proven to influence cocoa crop yield. Then, those datasets are divided into training and validation sets using multiple linear regression analysis and a Long Short-Term Memory (LSTM) network. The output model of those methods is assessed using two metrics: coefficient of determination and Root Means Square Error (RMSE). From those model performance metrics, LSTM outperformed multiple linear regression analysis. LSTM has an R-square of 98% and an RMSE of 0.3 while multiple linear regression just reached 82% of the R-square and 2.57 of the RMSE. The LSTM model has been proven to be valid.
ANALISA DAN DESAIN SISTEM INFORMASI KEUANGAN STUDI KASUS PENDIDIKAN GURU RAUDHATUL ATHFAL (PGRA) Pramudita, Krisna Eka; Vitianingsih, Anik Vega; Kacung, Slamet; Maukar, Anastasia Lidya; Wati, Seftin Fitri Ana
JUSIM (Jurnal Sistem Informasi Musirawas) Vol 9 No 1 (2024): JUSIM : Jurnal Sistem Informasi Musi Rawas JUNI
Publisher : LPPM UNIVERSITAS BINA INSAN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32767/jusim.v9i1.2246

Abstract

Kesulitan dalam pembuatan laporan keuangan terkait dengan pengelolaan laporan keuangan yang masih banyak dilakukan menggunakan Gmail atau WhatsApp, selanjutnya rincian laporan keuangan tersebut akan dibuat salinan untuk diarsipkan menggunakan Microsoft office Excel. Penelitian ini menghasilkan rancangan sistem informasi keuangan untuk Lembaga Pendidikan Guru Raudhatul Athfal (PGRA). Sistem akan mampu menampilkan informasi keuangan dalam bentuk laporan, mengelola dan mengelompokkan pemasukan dan pengeluaran berdasarkan sumber, tanggal, dan waktu, serta menampilkan persentase hasil analisis kondisi keuuangann antara pemasukan dan pengeluaran. Model pengembangan perangkat lunak dengan pendekatan waterfall yang mencakup langkah-langkah analisis kebutuhan, desainn spesifikasi, implementasi, pengujiann, dan pemeliharaan. Sistem ini akan membantu lembaga dalam pembuatan, pengiriman laporan keuangan, dan arus kas, Hasil penelitian ini mampu membantu dalam keberlanjutan operasional sekolah, menjaga transparansi dan keakuratan manajemen keuangan.
Pengembangan Aplikasi Game Edukasi Sejarah Sunan Kalijaga Berbasis Android Vitianingsih, Anik Vega; Firmansyah, Anggi; Maukar, Anastasia Lidya; Choiron, Achmad; Cahyono, Dwi
JKTP: Jurnal Kajian Teknologi Pendidikan Vol 6, No 1 (2023)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um038v6i12023p001

Abstract

Historical education is essential in forming human character because it is the basis for forming a sense of nationalism. Along with the development of technology, learning models are also affected. Learning can be facilitated through learning sources other than educators, thereby changing the role of educators in learning and adapting learning to current developments. One of the learning resources is game technology. Game applications can be a learning medium because of their visual and interactive nature. Packing history learning into an educational game application might be an alternative source of learning that is interesting and not monotonous. The purpose of this research is developing education media as an Android-based historical learning tool by packaging the historical learning of the story of Sunan Kalijaga in the form of a game application. The results of the black box, white box trials that went well, and the feasibility test that was carried out on 15 respondents, 93% stated that the material presented was appropriate so that it can be concluded that the game application is suitable for use as an alternative media for mobile learning by teachers and students with an assessment feature using an Android smartphone.AbstrakPendidikan sejarah sangat penting dalam proses pembentukan karakter manusia karena merupakan dasar dari pembentukkan rasa nasionalisme. Seiring dengan berkembangnya teknologi, Pembelajaran pun ikut terpengaruhi. Pembelajaran dapat dipermudah melalui sumber pembelajaran selain pendidik, sehingga menggubah peran pendidik dalam pembelajaran dan menyesuaikan pembelajaran dengan perkembangan zaman saat ini. Salah satu sumber pembelajaran itu adalah teknologi game. Aplikasi game dapat menjadi media pembelajaran karena sifatnya yang visual dan interaktif. Mengemas pembelajaran sejarah kedalam sebuah aplikasi game edukasi mungkin bisa menjadi salah satu alternatif sumber pembelajaran yang menarik dan tidak monoton. Tujuan dari penelitian ini adalah membuat aplikasi game “Lokajaya Sang Kalijaga” sebagai sarana pembelajaran sejarah berbasis Andoid dengan mengemas pembelajaran sejarah kisah Sunan Kalijaga ke dalam bentuk aplikasi game. Hasil dari uji coba black box, white box yang berjalan baik serta uji kelayakan yang telah dilakukan pada 15 responden, 93% menyatakan materi yang dibawakan telah sesuai sehingga dapat disimpulkan aplikasi game layak dipergunakan sebagai media alternatif pembelajaran secara mobile oleh guru dan murid dengan fitur penilaian menggunakan smartphone Android.
Sistem Rekomendasi Pemilihan Komponen Komputer Menggunakan Metode AHP dan Profile Matching Salmanarrizqie, Ageng; Vitianingsih, Anik Vega; Kristyawan, Yudi; Maukar, Anastasia Lidya; Marisa, Fitri
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 3 (2024): Juli 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i3.7643

Abstract

Computers have become one of the technological tools that play a crucial role in enhancing society's productivity. Therefore, many desktop computer users assemble their own computers to achieve computer performance according to their preferences or needs. However, some people lack information about the variations, specifications, and capabilities of each computer component to be assembled. This research offers a recommendation system that is part of a decision support system (DSS) to assist users in providing recommendations for computer components that are being sought and needed based on brand, price, and specifications using the Analytic Hierarchy Process (AHP) and Profile Matching methods. Parameters are based on the processor, motherboard, graphics card (VGA), storage, RAM, power supply, and casing with priority categories based on specifications, price, and brand. Data weighting is done using the Analytic Hierarchy Process (AHP) method, while the Profile Matching method is used for ranking the weighting results. The research results show an accuracy rate of 60% using the Profile Matching method, while the AHP method achieves an accuracy rate of 57%.
Forecasting Model of Indonesia's Oil & Gas and Non-Oil & Gas Export Value using Var and LSTM Methods Rijal, Khaidar Ahsanur; Vitianingsih, Anik Vega; Kristyawan, Yudi; Maukar, Anastasia Lidya; Wati, Seftin Fitri Ana
Jurnal Teknologi dan Manajemen Informatika Vol. 10 No. 1 (2024): Juni 2024
Publisher : Universitas Merdeka Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26905/jtmi.v10i1.13127

Abstract

As a country with abundant natural resources in the form of mineral and non-mineral products, Indonesia is characterized by its ability to fulfill domestic and foreign needs through export activities categorized into two commodities: oil and gas and non-oil and gas. Export activities are an indicator of the country's economic growth that often fluctuates in value, and these conditions are fundamentally caused by a decrease in production quantity and the instability of the global economic climate. The strategy to overcome these problems is to create a forecasting model. This research aims to develop a forecasting model using time series analysis methods, including vector autoregressive (VAR) and long short-term memory (LSTM) methods based on oil and non-oil and gas value parameters. The results of the Granger causality test stated that the values of oil and gas and non-oil and gas affect each other. The VAR model with the optimum lag produced by the Akaike Information Criterion (AIC) test obtained an accuracy value of MAPE oil & gas and non-oil and gas of 18.4% and 32.1%, respectively. LSTM generates the best model with a MAPE value of 6,23% for oil & gas and 8,18% for non-oil and gas.
Proposed Business Expansion of Yatai Tori using Constraint Management Mohamad Toha; Adi Saptari; Anastasia Lidya Maukar
JIE Scientific Journal on Research and Application of Industrial System Vol 9, No 1 (2024)
Publisher : President University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33021/jie.v9i1.4983

Abstract

Yatai Tori management expects the business to double in size from its current condition while facing a minimal market growth of 3.7%. In the Market sector, performance needs to be perfect: tasty menu, Friendly Service, Clean and Attractive tools, Fast responses from the servants, and Clear and easy access to information on social media. In terms of the physical sector, the space of Yatai Tori is sufficient to handle 40 clients per day, which is double the existing performance of 15 customers per day. It should add one person to balance the workload of an employee. Following the Policy sector, management should implement employee compensation to motivate workers to increase performance. And management should find a good supplier to make the minimum possible food cost, increase the favourite menu stock, and decrease the favourite lees menu to control the capacity of Yatai Tori. To elevate the limitation, an investment of Rp. 370.000.000 and a total working capital of Rp. 30.000.000 is required, yielding an internal rate of return of 23.36%.
Sentiment Analysis of Cyberbullying Detection on Social Networks using the Sentistrenght Method Kevin Heryadi Yunior; Anik Vega Vitianingsih; Slamet Kacung; Anastasia Lidya Maukar; Andini Dwi Arumsari
Sistemasi: Jurnal Sistem Informasi Vol 13, No 4 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i4.4226

Abstract

In today's swiftly changing digital realm, social media has emerged as a pervasive means of communication, yet it has also fostered the rise of cyberbullying, especially among young demographics. This research strives to develop an application that assesses public sentiment on Instagram regarding cyberbullying instances, categorizing sentiments as positive, negative, or neutral. Drawing data from Instagram accounts such as kumparandotcom, merdekadotcom, and okezonedotcom, the approach combines lexicon-based text labeling and sentiment analysis employing Sentistrength. Findings demonstrate the method's effectiveness, achieving accuracy, precision, and recall rates exceeding 85% while offering precise visualization of predictions. This study contributes to combatting cyberbullying, aiming to improve victims' mental well-being by providing clearer insights into social sentiment. The dataset comprises 4500 comments collected through web crawling, categorized into positive (735 entries), negative (2478 entries), and neutral (1288 entries) sentiments. The evaluation highlights the commendable performance of Sentistrength, achieving the highest accuracy at 93.85%.
Sentiment Analysis of Brand Ambassador Influence on Product Buyer Interest Using KNN and SVM Putri, Natasya Kurnia; Vitianingsih, Anik Vega; Kacung, Slamet; Maukar, Anastasia Lidya; Yasin, Verdi
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 2 (2024): September 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i2.29469

Abstract

In the dynamic marketing, companies usually use strategies involving celebrities or influencers to promote their products or brands. The currently popular strategy is using Korean boy bands as brand ambassadors. This collaboration certainly gets a lot of opinion responses through tweets on X app social media. This research aims to analyze sentiment to determine how the product buyer's interest responds to brand suitability, brand image management, and the influence of issues that arise in this collaboration. The research stages consist of data collection, pre-processing, labeling, weighting, and classification with K-Nearest Neighbor and Support Vector Machine and performance evaluation using a confusion matrix. The dataset used was 696 tweets taken using web scrapping techniques. This research uses the Lexicon-based method to divide the dataset into positive, negative, and neutral classes. The SVM method shows superior test results by achieving an accuracy rate of 83.34% compared to the KNN method, which produces an accuracy value of 71.2% in its calculations
Sistem Rekomendasi Pemilihan Komponen Komputer Menggunakan Metode AHP dan Profile Matching Salmanarrizqie, Ageng; Vitianingsih, Anik Vega; Kristyawan, Yudi; Maukar, Anastasia Lidya; Marisa, Fitri
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 3 (2024): Juli 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i3.7643

Abstract

Computers have become one of the technological tools that play a crucial role in enhancing society's productivity. Therefore, many desktop computer users assemble their own computers to achieve computer performance according to their preferences or needs. However, some people lack information about the variations, specifications, and capabilities of each computer component to be assembled. This research offers a recommendation system that is part of a decision support system (DSS) to assist users in providing recommendations for computer components that are being sought and needed based on brand, price, and specifications using the Analytic Hierarchy Process (AHP) and Profile Matching methods. Parameters are based on the processor, motherboard, graphics card (VGA), storage, RAM, power supply, and casing with priority categories based on specifications, price, and brand. Data weighting is done using the Analytic Hierarchy Process (AHP) method, while the Profile Matching method is used for ranking the weighting results. The research results show an accuracy rate of 60% using the Profile Matching method, while the AHP method achieves an accuracy rate of 57%.
Co-Authors Achmad Aziz Wahdana Achmad Choiron Adi Saptari Agus Sasmito Agustinus Noertjahyana Ahmad Yanu Rokhim Anang Aris Widodo andini dwi arumsari Andira Andira Andira Andira Andira Andira Andira Taslim Andira, Andira ANGGI FIRMANSYAH Anik Vega Vitianingsih Anik Vega Vitianingsih Anik Vega Vitianingsih Anik Vega Vitianingsih Anik Vega Vitianingsih Anik Yuesti Anindo Saka Fitri Anindo Saka Fitri Apri Junaidi, Apri Arie Restu Wardhani Arizia Aulia Aziiza Arrosyadi, Laesa Qotrun Nada Arthur Silitonga Athina Sakina Ratum Avania Shinta Azzahra, Morra Fatya Gisna Nourielda Bella Chelsea Berliana Burhan Primanintyo Cakranegara, Pandu Adi Carolena Setephany Christian Setiadi Ciswondo Ciswondo Dewa Anggara Kesuma Dian Retno Sari Dewi DWI CAHYONO Fauzan, Rizky Fauzi, Ariq Ammar Fawaidul Badri Firmansyah, Deden Fitri Marisa Fitri Marisa Fitri Marisa Fitri Marissa Gita Indah Marthasari Gunawan Hamidan, Rusdi Hashim, Ummi Rabah Helmi Indra Purnomo Hermansyah, David Herwan Yusmira Hikmawati, Nina Kurnia Husri Sidi Ineu Widaningsig Sosodoro Ineu Widaningsih Ineu Widaningsih Sosodoro Ineu Widaningsih Sosodoro Ineu Widaningsih Sosodoro, Ineu Widaningsih Intan Puspita Pribadi Intan Yosa Pramisela Jack Febrian Rusdi Jazid Rizkon Jean Hillary P Korua Jenifer Cafriaty Johan Krisnanto Runtuk Johan Runtuk Julius Mulyono Kacung Hariyono Kamalrudin, Massila Kevin Heryadi Yunior Kresna Arief Nugraha KRISTIAWAN KRISTIAWAN Luqman Hakim Mardiana Andarwati MARIFANI FITRI ARISA Mashudi Mashudi Maulidiana, Putri Dwi Rahayu Maurits Walalayo Mieke Wijayanti Minggow, Lingua Franca Septha Mochammad Syaiful Riza Mohamad Toha Mohd Syaiful Rizal Mucalinda Rupasari Mucalinda Rupasari Muhammad Afra Irwansyah Muzaki, Mochammad Rizki Nurhaba Djiha Octa Wendy Tanurahardja Oktavia Sunny Pramisela, Intan Yosa Pramudita, Atanasia Pramudita, Krisna Eka Puspitarini, Erri Wahyu Putri, Jessica Ananda Putri, Natasya Kurnia Putu Gede Ari Krismantoro Rachmad Ary Ramadhan Ramadhan, Rachmad Ary Rendy - Resza Adistya Pangestu Rhiza Adiprabowo Rhiza Adiprabowo, Rhiza Richki Hardi Rijal, Khaidar Ahsanur Rivaldo Tito Lamberto Da Silva Rusdi, Jack Febrian Salmanarrizqie, Ageng Seftin Fitri Ana Wati Seftin Fitri Ana Wati Shofa Ramadhina Sigit Sigalayan Siti Hajar Binti Mohtar Slamet Kacung Slamet Kacung, Slamet Slamet Riyadi, Slamet Riyadi Stefanus Setiady SUMARDI Susilo, Yunus Sutrisno Sutrisno Syahroni Wahyu Iriananda, Syahroni Wahyu Tantyo Edo Wicaksana Tubagus Mohammad Akhriza Ullum, Choirul Wati, Seftin Fiti Ana Wati, Seftin Fitri Ana Widiya Nur Permata Yana Hendriana Yasin, Verdi Yomara Oktafamero Yoyon Arie Budi Suprio Yudi Kristyawan, Yudi Yunus Susilo Yustian Zandroto, Yosefin Yuniati Zangana, Hewa Majeed