Claim Missing Document
Check
Articles

Proses Berpikir Kreatif Siswa Berkemampuan Spasial Tinggi dalam Menyelesaikan Soal Open-ended Berdasarkan Tahapan Wallas Mirza Amelia Oktaviani; Sisworo Sisworo; Erry Hidayanto
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 3, No 7: JULI 2018
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (651.813 KB) | DOI: 10.17977/jptpp.v3i7.11363

Abstract

Abstract: This study aims to describe the process of creative thinking of high-spatial ability students in solving open ended problems based on the stages of Wallas. The results of this study include (1) preparation stage, subject reading questions and looking for information of problems, (2) incubation stage, subject had time to pause and then draw cubes, (3) illumination stage, subject designs the solution for both ofproblems using Pythagorean theorem and circumference of region of cube, and (4) verification stage, student apply the idea and found that subject produce one solution for first problem and produce two solution for second solution. Abstrak: Penelitian ini bertujuan untuk mendeskripsikan proses berpikir kreatif siswa berkemampuan spasial tinggi kelas XI dalam menyelesaikan soal open-ended berdasarakan tahapan Wallas. Soal open-ended dalam penelitian ini menggunakan materi dimensi tiga. Hasil penelitian ini, meliputi (1) tahap persiapan, subjek membaca soal dan mengidentifikasi informasi soal, (2) tahap inkubasi, subjek sempat berhenti sejenak kemudian menggambar kerangka kubus yang sesuai, (3) tahap iluminasi, siswa merancang penyelesaian untuk soal pertama dan kedua dengan menggunakan teorema Pythagoras dan keliling bidang, dan (4) tahap verifikasi, siswa menerapkan ide penyelesaian dan menemukan satu solusi untuk soal open-ended pertama dan dua solusi untuk soal open-ended kedua dengan tepat.
Berpikir Pseudo Siswa pada Konsep Pecahan Agus Alamsyah; Susiswo Susiswo; Erry Hidayanto
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 4, No 8: AGUSTUS 2019
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v4i8.13041

Abstract

Abstract: Purpose of this research was to study students' pseudo thinking in concept of fractions. Data obtained using questions and interviews. Question used to find answers of students in understanding concept of fractions. Interviews used to find reasons for students answer. Findings show that students think pseudo conceptual, true-pseudo and false-pseudo. Pseudo conceptual thinking when students condition not understand shade when drawing fractions. Thinking true-pseudo when students in state not understand concept of drawing fractions begins with same size and broken down as much denominator fractions. Thinking false-pseudo when students state poor understanding problem and reflection for concept of drawing fractions.Abstrak: Tujuan penelitian ialah untuk mempelajari berpikir pseudo siswa dalam konsep pecahan. Data diperoleh dengan menggunakan instrumen soal dan wawancara. Soal digunakan untuk mengetahui jawaban siswa dalam memahami konsep pecahan. Wawancara digunakan untuk mengetahui alasan siswa dalam menjawab. Temuan menunjukkan bahwa siswa mengalami berpikir pseudo conceptual, true-pseudo dan false-pseudo. Berpikir pseudo conceptual saat siswa pada kondisi tidak memahami perlunya mengarsir saat menggambar pecahan. Berpikir true-pseudo saat siswa pada kondisi tidak memahami konsep menggambar pecahan berawal dari ukuran yang sama dan dipecah sebanyak penyebut pecahan. Berpikir false-pseudo saat siswa pada kondisi kurang memahami soal dan diperlukan refleksi konsep menggambar pecahan.
Profil Pointing dan Representational Gesture Siswa dalam Menyelesaikan Soal Matematika Materi Fungsi Linear Ewan Gunawan; Erry Hidayanto; Rustanto Rahardi
Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan Vol 6, No 3: MARET 2021
Publisher : Graduate School of Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/jptpp.v6i3.14669

Abstract

Abstract: This study used a qualitative-descriptive study with the aim of this study to describe the pointing profile and gesture representation of students in solving mathematical problems with the material of linear functions. The subjects in the study were 2 students of class X SMA Negeri 2 Dompu. The research subjects were selected by 1 student as the pointing gesture and 1 student as the representational gesture. Data was collected by providing assignments, gesture observation sheets, and interviews with selected subjects. The data were analyzed qualitatively through data reduction, data presentation, and drawing conclusions. This study resulted that the pointing gesture helped P1 describe the answer completion plan, helped focus himself to perform calculations, generate ideas, and facilitate the description of information from questions and answers as well as check and understand questions and answers when solving questions. Representational gesture helps R1 to describe the steps to understand the graphic related to the problem, helps focus on understanding the problem and can be careful in solving the problem. Also plays a role in concretizing ideas/ideas that are being worked on or are being thought of by students.Abstrak: Penelitian ini menggunakan penelitian kualitatif-deskriptif dengan tujuan penelitian ini untuk mendeskripsikan profil pointing dan representasi gesture siswa dalam menyelesaikan soal matematika materi fungsi linear. subjek dalam penelitian adalah 2 orang siswa kelas X SMA Negeri 2 Dompu. Subjek penelitian dipilih 1 orang siswa sebagai pointing gesture dan 1 orang siswa sebagai representational gesture. Perolehan data dilakukan dengan memberikan lembar tugas, lembar Observasi gesture, dan wawancara yang terpilih menjadi subjek. Data di analisis secara kualitatif melalui reduksi data, penyajian data, dan menarik kesimpulan. Penelitian ini menghasilkan bahwa Pointing gesture membantu P1 menggambarkan rencana penyelesaian jawaban, membantu memfokuskan dirinya untuk melakukan hitungan, memunculkan ide, dan mempermudah gambaran informasi dari soal dan jawaban serta mengecek dan memahami soal dan jawaban saat menyelesaikan soal. Representational gesture membantu R1 untuk menggambarkan langkah memahami grafik terkait hubungan dengan soal, membantu memusatkan perhatian memahami soal dan dapat teliti dalam menyelesaikan soal. Berperan juga untuk mengkongkretkan ide/gagasan yang sedang dikerjakan maupun sedang dipikirkan siswa.
Kesulitan Peserta Didik dalam Menyelesaikan Soal Program Linear pada Pembelajaran Daring Laily Wijayanti Utami; Erry Hidayanto; Sisworo Sisworo
Mosharafa: Jurnal Pendidikan Matematika Vol 11, No 2 (2022)
Publisher : Institut Pendidikan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (610.725 KB) | DOI: 10.31980/mosharafa.v11i2.1395

Abstract

Peserta didik mengalami kesulitan dalam pembelajaran daring matematika. Penelitian ini bertujuan untuk mendeskripsikan kesulitan peserta didik dalam menyelesaikan permasalahan program linear pada pembelajaran daring. Subjek penelitian merupakan peserta didik kelas XII MIPA 1 SMAN 5 Pamekasan tahun pelajaran 2020/2021 sejumlah 29 peserta didik. Instrumen yang digunakan dalam penelitian berupa soal tes program linear sebanyak 2 soal bentuk uraian, soal tersebut sudah divalidasi sebelumnya oleh dua validator. Pengumpulan data dilakukan dengan cara observasi, pemberian soal tes dan wawancara. Jenis penelitian ini adalah penelitian kualitatif di mana data dikumpulkan melalui hasil pengerjaan soal program linear, observasi, wawancara, dan dokumentasi. Teknik analisis data dilakukan dengan beberapa tahap, yaitu reduksi data, penyajian data dan penarikan kesimpulan. Hasil penelitian menunjukkan bahwa peserta didik mengalami beberapa kesulitan dalam menyelesaikan program linear pada beberapa langkah, yaitu mengubah soal cerita program linear menjadi bentuk matematika, mengarsir dan menentukan daerah hasil penyelesaian, menentukan koordinat titik pojok pada daerah penyelesaian dan menarik kesimpulan.Students have difficulty learning mathematics online. This study aims to describe the difficulties of students in solving linear programming problems in online learning. The research subjects were students of class XII MIPA 1 SMAN 5 Pamekasan for the academic year 2020/2021 a total of 29 students. The instrument used in the study was in the form of linear program test questions as many as 2 questions in the form of descriptions, these questions had been previously validated by two validators. Data was collected employing observation, giving test questions, and interviews. This type of research is qualitative research where data is collected through the results of working on linear programming questions, observations, interviews, and documentation. The data analysis technique was carried out in several stages, namely data reduction, data presentation, and conclusion drawing. The results showed that students experienced some difficulties in completing linear programming in several steps, namely changing linear programming story problems into mathematical form, shading and determining the area of the solution, determining the coordinates of the corner points in the settlement area, and drawing conclusions.
Elementary School Teachers' Mathematical Connections in Solving Trigonometry Problem Sitti Fithriani Saleh; Purwanto Purwanto; Sudirman Sudirman; Erry Hidayanto; Susiswo Susiswo
Research in Social Sciences and Technology Vol 3 No 3 (2018): Research in Social Sciences and Technology
Publisher : Research in Social Sciences and Technology- OpenED Network

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46303/ressat.03.03.3

Abstract

This study aims to reveal mathematical connections of elementary school teachers in solving trigonometric problem. The subjects of this study were 22 elementary school teachers as the prospective participants of Professional Teacher Education and Training (PTET). They came from several districts of South Sulawesi Province. The teachers were given trigonometry problem. Trigonometry problems could encourage teachers to connect geometrical and algebraic concept, graphical representation and algebraic representation, as well as daily life context. The result shows that most of the subject teachers of this study solved the problem according to procedures they know without considering everyday life context. On the other hand, there were some subjects who connected problem with everyday life context using graphical, verbal, or numerical representation. Thus, subjects who were able to connect problem information with appropriate concepts and procedures are categorized as substantive connections. While the subjects who were able to connect problem information with mathematical concepts but less precise in using the procedure are categorized as classification connections.
KEMAMPUAN LITERASI NUMERASI SISWA DALAM MENYELESAIKAN SOAL KONTEKS SOSIAL BUDAYA PADA TOPIK GEOMETRI JENJANG SMP Maskanur Rezky; Erry Hidayanto; I Nengah Parta
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 11, No 2 (2022)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1323.737 KB) | DOI: 10.24127/ajpm.v11i2.4879

Abstract

Tujuan penelitian ini ialah untuk mendeskripsikan kemampuan literasi numerasi siswa SMP kelas IX pada topik geometri dengan soal berkonteks sosial budaya berdasarkan kemampuan matematis siswa. Pendekatan pada penelitian ini menggunakan pendekatan kualitatif dengan metode analisis deskriptif. Subjek yang dipilih sebanyak enam orang dari 37 siswa dengan masing-masing dua siswa yang memiliki kemampuan matematis rendah, sedang dan tinggi di kelas IX. 1 SMP Negeri 138 Jakarta tahun ajaran 2021-2022. Instrumen yang digunakan pada penelitian ini ialah soal geometri yang dikaitkan dengan konteks sosial budaya dari beberapa daerah di Indonesia dan pedoman wawancara terhadap subjek penelitian. Teknik analisa yang digunakan ialah dengan memeriksa hasil pekerjaan siswa berdasarkan indikator yang ditetapkan didukung oleh hasil wawancara subjek penelitian dan selanutnya dibuat narasi deskriptif untuk menggambarkan kemampuan subjek penelitian. Hasil penelitian menunjukan bahwa subjek dengan kemampuan rendah masih belum bisa memahami makna masalah yang disajikan berakibat belum memenuhi capaian indiaktor dalam kemampuan literasi numerasi sedangkan subjek dengan kemampuan sedang masih terdapat beberapa indikator kemampuan literasi numerasi yang tidak dipenuhi seperti kemampuan representasi dan penggunaan simbol dan bahasa dan subjek dengan kemampuan tinggi mampu mengimplementasikan pemahaman matematisnya untuk menyelesaikan soal sehingga telah memenuhi capaian indikator kemampuan literasi numerasi.
Proses Pemecahan Masalah Trigonometri Berdasarkan Teori John Dewey Ditinjau dari Gaya Kognitif Rachmalia Vinda Kusuma; Erry Hidayanto; Tjang Daniel Chandra
Jurnal Cendekia : Jurnal Pendidikan Matematika Vol 6 No 2 (2022): Jurnal Cendekia: Jurnal Pendidikan Matematika Volume 6 Nomor 2 Tahun 2022
Publisher : Mathematics Education Study Program

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/cendekia.v6i2.1403

Abstract

Tujuan dari penelitian ini adalah mendeskripsikan proses pemecahan masalah trigonometri berdasarkan teori John Dewey ditinjau dari gaya kognitif field independent dan field dependent. Penelitian ini adalah penelitian deskriptif dengan pendekatan kualitatif. Penelitian dilakukan terhadap siswa kelas X AKl 3 dan X AKl 4 di SMK Negeri 2 Tuban dengan 4 subjek. Data diperoleh melalui tes tulis dan wawancara. Teknik analisis data menggunakan 4 tahapan yakni transkrip data verbal, reduksi data, penyajian data, dan penarikan kesimpulan. Hasil penelitian menunjukkan bahwa: 1) Proses pemecahan masalah trigonometri siswa dengan gaya kognitif field independent (FI) memenuhi lima tahapan dari Teori John Dewey; dan 2) Proses pemecahan masalah trigonometri siswa dengan gaya kognitif field dependent (FD) belum memenuhi lima tahapan dari Teori John Dewey khususnya pada tahap ketiga yakni pengumpulan beberapa solusi dan tahap kelima yakni menguji atau mengevaluasi solusi.
IMPLEMENTASI MODEL PROBLEM BASED LEARNING (PBL) UNTUK MENINGKATKAN KEMAMPUAN PEMECAHAN MASALAH SISWA KELAS XI Yayon Adi Galung Sastria; Erry Hidayanto; Santi Irawati
Jurnal Kajian Pembelajaran Matematika Vol 4, No 2 (2020): Jurnal Kajian Pembelajaran Matematika
Publisher : FMIPA UNIVERSITAS NEGERI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um076v4i22020p57-70

Abstract

The problem that arises in learning the material for sequences and series in class XI Accounting at An-Nuuru Tirtoyudo Islamic Vocational School is the low problem-solving ability. These indications are seen, among others, the lack of basic knowledge of students about mathematics, counting errors, errors in applying strategies, inability to translate problems in mathematical form, misinterpreting problems in mathematical concepts, and lack of understanding of problems that arise. The application of the Problem Based Learning (PBL) model is an alternative that can be done by teachers to improve mathematical problem solving abilities. This research is a Classroom Action Research (CAR) on the Implementation of Problem Based Learning (PBL) Models to Improve Problem Solving Ability of Class XI Accounting Students at SMK Islam An-Nuuru Tirtoyudo. The results showed that the application of the PBL model could improve mathematical problem solving abilities. The stage of orienting students to problems, among others, students can relate the problem to the knowledge they have, can determine the things that are known, and can determine the things that are asked. The stage of coordinating students to learn through the formation of study groups. The stage of guiding the investigation is done by going around each group to provide facilities to students who have difficulty. The stage of developing and presenting the work is done by asking students to present their work in the form of reports, photos, videos, and others. The stage of analyzing and evaluating problem solving is done by asking students to re-examine the process and problem solving results obtained.
PSEUDO SISWA DALAM MENYELESAIKAN SOAL BERTIPE HIGHER ORDER THINKING SKILLS BERDASARKAN AKTIVITAS PROBLEM SOLVING Dwi Susanti; Purwanto Purwanto; Erry Hidayanto
Mathematics Education And Application Journal (META) Vol 1, No 1 (2019)
Publisher : Jurusan Pendidikan Matematika Universitas Borneo Tarakan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (638.607 KB) | DOI: 10.35334/meta.v1i1.847

Abstract

Learning mathematics involves students not only to be able to ensure calculations but also be able to ensure reasoning and analyzing. Analytical skills are included in high order thinking skills (HOTS). Higher order thinking skills (HOTS) can be generated through problem solving activities. In solving a problems, it is possible that the way the student thinks is not suitable to the answer they get or it can be said that they are doing pseudo thinking. Pseudo thinking can be caused by the absence of reflection by students. This study aims to describe the student's occurring false-pseudo thinking in solving HOTS type problems on the quadratic inequality. Research subjects were taken based on purposive sampling, taking into account their communication abilities. The subjects in this study were high school students who had studied the material inequality squared. The data collection was done by using think-out-loud (TOL) method, the students were asked to express out loud what they were thinking when solving the problem which was given. From the results it can be explained that the process of the students’ false-pseudo thinking HOTS type problems on the quadratic inequality happen as follows: 1) It begins with the students’ mistake of making assumptions when they are understanding the problem 2) The incompleteness of the students’ thinking substructure in the process of understanding the problem, and 3) The incompleteness of the students’ thinking substructure in planning the solution.
KEMAMPUAN PEMECAHAN MASALAH MATEMATIS SISWA SMA DALAM PEMBELAJARAN TATAP MUKA TERBATAS PADA MASA PANDEMI COVID-19 Annesa Eka Norman; Erry Hidayanto; Makbul Muksar
AKSIOMA: Jurnal Program Studi Pendidikan Matematika Vol 11, No 3 (2022)
Publisher : UNIVERSITAS MUHAMMADIYAH METRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1749.872 KB) | DOI: 10.24127/ajpm.v11i3.5179

Abstract

Penelitian ini bertujuan untuk mengetahui kemampuan pemecahan masalah matematis siswa kelas XI SMA selama pembelajaran tatap muka terbatas pada masa pandemi COVID-19. Penelitian ini adalah penelitian kualitatif-deskriptif. Subjek penelitian adalah sebanyak 3 siswa di SMAN 1 Tembilahan Hulu, Kabupaten Indragiri Hilir, Riau yang dipilih secara purposive sampling dengan kategori kemampuan pemecahan masalah matematis tinggi, sedang, dan rendah. Teknik pengumpulan data menggunakan tes dan wawancara. Teknik analisis data yang digunakan adalah teknik Miles dan Huberman yang meliputi reduksi data, penyajian data, dan penarikan kesimpulan. Kesimpulan yang diperoleh adalah sebagai berikut: 1) Kategori kemampuan pemecahan masalah matematis tinggi mampu memahami masalah, mampu memikirkan langkah-langkah penting dan saling menunjang dalam menyusun rencana penyelesaian, masih terdapat kesalahan dalam memasukkan informasi ke rumus, dan mampu menelaah kembali penyelesaian walau tidak teliti. 2) Kategori kemampuan pemecahan masalah matematis sedang masih terdapat kesalahan dalam mengidentifikasi informasi yang ditanya dalam memahami masalah, subjek mampu memikirkan langkah-langkah penting dan saling menunjang dalam menyusun rencana, namun tidak teliti dalam menelaah kembali selesaiannya. 3) Kategori kemampuan pemecahan masalah matematis rendah masih terdapat kesalahan dalam mengidentifikasi informasi pada tahap memahami masalah, subjek tidak mampu memikirkan langkah-langkah penting dan saling menunjang dalam menyusun rencana, tidak melakukan perhitungan dalam menyelesaikan masalah, dan tidak menelaah kembali selesaiannya.
Co-Authors 'Azizah, Dewi Nur Abdur Rahman As’ari Afin Nur Latifa Agus Alamsyah Agus Yulianto Agus Yulianto Agustin, Nana Maulidah Aldino, Fals Ana Cholila Anggraini Eka Pramestasari Anggraini, Arika Dewi Annesa Eka Norman Anton Budi Jatmiko Arini, Kartika Ayu Dwi Ariza Husniyatul Ummah Arwan Mhd. Said Assegaff, Muhamad Farid Aynin Mashfufah Aziz Rizky Muhdiyanto Budiarto, Darum Cholis Sa’dijah Christi Matitaputty Darum Budiarto Dian Ratna Sari Dwi Aldi Hidayatulloh Dwi Cahyowati, Ety Tedjo Dwi Listyorini Dwi Susanti Dwiyana Dwiyana Edy Bambang Irawan Eko Prasetyo Elis Dwi Wulandari Ety Tedjo Dwi Cahyowati Ewan Gunawan Fadhil Zil Ikram Faiqatul ‘Athiyah Fals Aldino Faradina, Erta Fatmianeri, Yulia Fauzan, Hakmi Rais Gestiani, Anggun Handayaningsih, Rohyatun Henny Rismawatie Yusmarina Heri Prianto Hery Susanto Hidayanto, Sisworo I Ketut Suada I Made Sulandra I Nengah Parta Ikhtiar, Muhammad Awwalul Indayani, Nunik Intan Mahyastuti Khoerul Umam Khomsatun Ni'mah Laily Wijayanti Utami Lely Purnawati Lisrahmat, Mimin Nazura Makbul Muksar Mariana, Erna Maskanur Rezky Mirza Amelia Oktaviani Mohammad Archi Maulyda Mohammad Dadan Sundawan Muhammad Noor Kholid Muhammad Rizaldi Munika, Risa Dewi Nana Maulidah Agustin Nunik Indayani Nur Indah Permata Sari Nuratiqoh, Nuratiqoh Permadi, Hendro Puguh Darmawan Puji Astuti Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwanto Purwosetiyono, Fransiskus Xaverius Didik Putri Raznia Safira Putri, Intan Faraminda Qohar, Abd. Rachmalia Vinda Kusuma Refni Adesia Pradiarti Risna Zulfa Musriroh Rohmah, Riska Nur Rosimanidar Rosimanidar Rosimanidar Rosyidah, Ana Siti Rustanto Rahardi Saleh, Sitti Fithriani Sandie Sari, Nur Indha Permata SATRIYAS ILYAS Sisworo Siti Nurjanah Sitti Fithriani Saleh Subanji Subanji Subanji, S Sudirman Sudirman Sudirman Sudirman Sukoriyanto Susiswo Swasono Rahardjo Tasni, Nurfaida Taufiq Hidayanto Tjang Daniel Chandra Toto Nusantara Umi Fitria Ayu Ummah, Ariza Husniyatul Utami, Laily Wijayanti Uun Hariyanti Vita Kusumasari Wildan Hakim Wulandari, Monika Retno Yayon Adi Galung Sastria Yulianto, Sisworo Yundari, Yundari