p-Index From 2020 - 2025
12.054
P-Index
This Author published in this journals
All Journal International Journal of Electrical and Computer Engineering Jurnal Rekayasa Proses Pixel : Jurnal Ilmiah Komputer Grafis Jurnal Pekommas Indonesian Journal of Educational Review (IJER) Journal of Environmental Engineering and Sustainable Technology Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Informatika dan Teknik Elektro Terapan Indonesian Journal on Computing (Indo-JC) Jurnal Inspiration JOIN (Jurnal Online Informatika) Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Creative Information Technology Journal JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING JFMR (Journal of Fisheries and Marine Research) JIKO (Jurnal Informatika dan Komputer) Insect (Informatics and Security) : Jurnal Teknik Informatika JITK (Jurnal Ilmu Pengetahuan dan Komputer) JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI Applied Information System and Management Jurnal Rekayasa Proses JURNAL EDUCATION AND DEVELOPMENT MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer J-SAKTI (Jurnal Sains Komputer dan Informatika) Indonesian Journal of Applied Informatics JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) CSRID (Computer Science Research and Its Development Journal) Informasi Interaktif Building of Informatics, Technology and Science Progresif: Jurnal Ilmiah Komputer Journal of Sustainable Engineering: Proceedings Series SENSITEK E-JURNAL JUSITI : Jurnal Sistem Informasi dan Teknologi Informasi Jurnal Teknologi Informasi dan Multimedia bit-Tech Jurnal Teknologi Informasi : Jurnal Keilmuan dan Aplikasi Bidang Teknik Informatika Dielektrika : Jurnal Ilmiah Kajian Teori dan Aplikasi Teknik Elektro Respati Journal Cerita: Creative Education of Research in Information Technology and Artificial Informatics G-Tech : Jurnal Teknologi Terapan JIKA (Jurnal Informatika) Jurnal Informa: Jurnal Penelitian dan Pengabdian Masyarakat Infotek : Jurnal Informatika dan Teknologi jurnal syntax admiration Jurnal TIKOMSIN (Teknologi Informasi dan Komunikasi Sinar Nusantara) Jurnal Ilmiah Publika Jurnal Teknimedia: Teknologi Informasi dan Multimedia Journal of Electrical Engineering and Computer (JEECOM) Information System Journal (INFOS) Buletin Poltanesa Jurnal Senopati : Sustainability, Ergonomics, Optimization, and Application of Industrial Engineering INFOSYS (INFORMATION SYSTEM) JOURNAL J-SAKTI (Jurnal Sains Komputer dan Informatika) Research Fair Unisri Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi Jurnal Dinamika Informatika (JDI) Jurnal Nasional Teknik Elektro dan Teknologi Informasi Jurnal Teknik Informatika Journal of Comprehensive Science Jurnal Indonesia Sosial Teknologi Ceddi Journal of Information System and Technology (JST) SmartComp Teknomatika: Jurnal Informatika dan Komputer JURNAL MULTIDISIPLIN BHATARA Jurnal Pengabdian Indonesia
Claim Missing Document
Check
Articles

Kladistik Genera Famili Leiognathidae melalui Penelusuran Morfologi Eksternal dan Otolith: Cladistic Genera of Family Leiognathidae Based on External Morphology and Otolith Samuel, Pratama Diffi; Wiadnya, Dewa Gede Raka; Anam, M. Choirul; Setyanto, Arief; Khamidah, Nur; Yasmin, Delviega Aisyah; Astuti , Septiana Sri
JFMR (Journal of Fisheries and Marine Research) Vol. 9 No. 1 (2025): JFMR on March
Publisher : Faculty of Fisheries and Marine Science, Brawijaya University, Malang, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jfmr.2025.009.01.15

Abstract

Anggota famili Leiognathidae atau Peperek termasuk dalam kategori minor commercial, berfungsi sebagai komoditas ketahanan pangan sehingga kurang mendapat perhatian untuk diteliti. Penelitian ini bertujuan untuk membuktikan hipotesis penemuan seluruh genera dari Leiognathidae pada perairan Pantai Jawa Timur. Sampel ikan dikoleksi dari hasil tangkapan nelayan dengan alat penangkapan ikan; Jaring Tarik, Cantrang, dan Mini-Trawl dari Januari 2023 sampai Oktober 2024. Analisis genus dilakukan melalui deskripsi morfologi eksternal, morfometri, dan penyelidikan otolith. Studi otolith dilakukan melalui koleksi sagittae dari tulang telinga di belakang otak. Analisis morfometri untuk memperjelas definisi bentuk tubuh menggunakan perangkat lunak TpsDig. Total 12 variabel morfologi digunakan untuk menjelaskan masing-masing kerabat pada genus. Sementara deskripsi otolith dianalisis dengan menggunakan 15 variabel bentuk, cekungan, dan tonjolan dari otolith. Dendogram dihasilkan dari analisis morfologi dan otolith untuk memisahkan kekerabatan di antara genus. Hasil analisis membuktikan bahwa terdeskripsi total 10 genera dari famili Leiognathidae yaitu; Leiognathus, Aurigequula, Eubleekeria, Photopectoralis, Nuchequula, Karalla, Gazza, Deveximentum, Equulites, dan Photolateralis. Genus Gazza ditemukan pada seluruh lokasi sampling. Namun genus Karalla hanya ditemukan pada lokasi sampling di Selatan Barat Jawa Timur (Pantai Dangkal Pacitan, dan Prigi Trenggalek). Hasil analisis dendogram berhasil menempatkan Equulites satu kerabat dengan Photolateralis, namun tidak berhasil memisahkan antara Leiognathinae dengan Gazzinae. Sebaliknya, analisis menggunakan morfologi otolith tidak berhasil menempatkan Equulites satu kelompok dengan Photolateralis, namun bisa memisahkan antara sub famili Leiognathinae dengan Gazzinae. Kondisi lingkungan geografis mungkin menjadi faktor utama terjadinya adaptasi morfologi eksternal dan otolith yang berbeda. Deskripsi morfologi dan otolith bisa digunakan sebagai indikator apomorfi genus. Analisis genetik melalui DNA barcoding masih diperlukan untuk menelusuri kekerabatan diantara genus.   Members of family Leiognathidae are included in the minor commercial category, functioning as a food security commodity so that they have received less attention for research. The study aims to prove the hypothesis of the discovery of all genera of Leiognathidae within coastal waters of East Java. Fish samples were collected from the catches of fishermen using fishing gear; Beach Seine, modified Danish Seine, and Mini-Trawl, from January 2023 to October 2024. Genera analysis was carried out through external morphological descriptions, morphometry, and otolith investigations. Otoliths were collection of sagittae from the ear bones behind the brain. Morphometric analysis to clarify the definition of body shape were using TpsDig software. A total of 12 morphological variables were used to describe each genus within family. While the otolith description was analyzed using 15 variables of shape, depression, and protrusion of the otolith. Each dendrogram was generated from morphological and otolith analysis to separate the clade among genera. The results of the analysis proved that all 10 genera of Leiognathidae were described, consisting of: Leiognathus, Aurigequula, Eubleekeria, Photopectoralis, Nuchequula, Karalla, Gazza, Deveximentum, Equulites, and Photolateralis. The genus Gazza was found in all sampling locations. However, the genus Karalla was only described in two sampling locations in Southwest of East Java (Pantai Dangkal Pacitan, and Prigi Trenggalek). The results of dendogram analysis succeeded in placing Equulites in the same clade as Photolateralis, but failed to separate Leiognathinae from Gazzinae. On the other hand, the analysis using otolith morphology failed to place Equulites in the same group as Photolateralis, but could separate Leiognathinae from Gazzinae. Geographical barriers and environmental factors might be the main factor in the occurrence of different morphological and otolith adaptations. Genera can be distinguished through external morphology and otolith description. Genetic analysis through DNA barcoding is still needed to trace the lineage among genera of Leiognathidae.
Deep Learning Model Compression Techniques Performance on Edge Devices Rakandhiya Daanii Rachmanto; Ahmad Naufal Labiib Nabhaan; Arief Setyanto
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 23 No. 3 (2024)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i3.3961

Abstract

Artificial intelligence at the edge can help solve complex tasks faced by various sectors such as automotive, healthcare and surveillance. However, challenged by the lack of computational power from the edge devices, artificial intelligence models are forced to adapt. Many have developed and quantified model compres-sion approaches over the years to tackle this problem. However, not many have considered the overhead of on-device model compression, even though model compression can take a considerable amount of time. With the added metric, we provide a more complete view on the efficiency of model compression on the edge. The objective of this research is identifying the benefit of compression methods and it’s tradeoff between size and latency reduction versus the accuracy loss as well as compression time in edge devices. In this work, quantitative method is used to analyze and rank three common ways of model compression: post-training quantization, unstructured pruning and knowledge distillation on the basis of accuracy, latency, model size and time to compress overhead. We concluded that knowledge distillation is the best, with potential of up to 11.4x model size reduction, and 78.67% latency speed up, with moderate loss of accura-cy and compression time.
FOREST FIRE LOCATION AND TIME RECOGNITION IN SOCIAL MEDIA TEXT USING XLM-ROBERTA Hafidz Sanjaya; Kusrini Kusrini; Kumara Ari Yuana; Arief Setyanto; I Made Artha Agastya; Simone Martin Marotta; José Ramón Martínez Salio
JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer) Vol. 10 No. 4 (2025): JITK Issue May 2025
Publisher : LPPM Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/jitk.v10i4.6194

Abstract

Forest fires have become a serious global threat, significantly impacting ecosystems, communities, and economies. Although remote sensing technology shows potential, limitations such as time delays, limited sensor coverage, and low resolution reduce its effectiveness for real-time forest fire detection. Additionally, social media can serve as a multimodal sensor, presenting multilingual text data with rapid and global coverage. However, it may encounter challenges in obtaining location and time information on forest fires due to limitations in datasets and model generalization. This study aims to develop a multilingual named entity recognition (NER) model to identify location and time entities of forest fires in social media texts such as tweets. Utilizing a transfer learning approach with the XLM-RoBERTa architecture, fine-tuning was performed using the general-purpose Nergrit corpus dataset containing 19 entities, which were relabeled into 3 main entities to detect location, date, and time entities from tweets. This approach significantly improves the model's ability to generalize to disaster domains across multiple languages and noisy social media texts. With a fine-tuning accuracy of 98.58% and a maximum validation accuracy of 96.50%, the model offers a novel capability for disaster management agencies to detect forest fires in a scalable, globally inclusive manner, enhancing disaster response and mitigation efforts.
Evaluating Transformer Models for Social Media Text-Based Personality Profiling Hartanto, Anggit; Ema Utami; Arief Setyanto; Kusrini
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 1 (2025): February 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i1.6157

Abstract

This research aims to evaluate the performance of various Transformer models in social media-based classification tasks, specifically focusing on applications in personality profiling. With the growing interest in leveraging social media as a data source for understanding individual personality traits, selecting an appropriate model becomes crucial for enhancing accuracy and efficiency in large-scale data processing. Accurate personality profiling can provide valuable insights for applications in psychology, marketing, and personalized recommendations. In this context, models such as BERT, RoBERTa, DistilBERT, TinyBERT, MobileBERT, and ALBERT are utilized in this study to understand their performance differences under varying configurations and dataset conditions, assessing their suitability for nuanced personality profiling tasks. The research methodology involves four experimental scenarios with a structured process that includes data acquisition, preprocessing, tokenization, model fine-tuning, and evaluation. In Scenarios 1 and 2, a full dataset of 9,920 data points was used with standard fine-tuning parameters for all models. In contrast, ALBERT in Scenario 2 was optimized using customized batch size, learning rate, and weight decay. Scenarios 3 and 4 used 30% of the total dataset, with additional adjustments for ALBERT to examine its performance under specific conditions. Each scenario is designed to test model robustness against variations in parameters and dataset size. The experimental results underscore the importance of tailoring fine-tuning parameters to optimize model performance, particularly for parameter-efficient models like ALBERT. ALBERT and MobileBERT demonstrated strong performance across conditions, excelling in scenarios requiring accuracy and efficiency. BERT proved to be a robust and reliable choice, maintaining high performance even with reduced data, while RoBERTa and DistilBERT may require further adjustments to adapt to data-limited conditions. Although efficient, TinyBERT may fall short on tasks demanding high accuracy due to its limited representational capacity. Selecting the right model requires balancing computational efficiency, task-specific requirements, and data complexity.
Analisis Metode CNN menggunakan Arsitektur Facenet dan VGG16 dalam Mengenali Wajah Penyandang Tunanetra Prastyo, Agung Budi; Setyanto, Arief
G-Tech: Jurnal Teknologi Terapan Vol 9 No 2 (2025): G-Tech, Vol. 9 No. 2 April 2025
Publisher : Universitas Islam Raden Rahmat, Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70609/gtech.v9i2.6573

Abstract

Face recognition is a rapidly growing biometric technology, especially with the application of Convolutional Neural Networks (CNN) such as FaceNet and VGG16. This research aims to evaluate the effectiveness of both CNN models in recognizing the faces of visually impaired people, who face the challenge of limited vision in image retrieval. The research uses two face detection methods, namely MTCNN and HaarCascade, to analyze the effect of face detection on recognition accuracy. The experimental method was conducted by collecting facial data of visually impaired people under various lighting conditions and expressions. The results show that accurate face detection greatly affects the performance of face recognition models, with MTCNN providing better face detection results (93.75% detection accuracy) than HaarCascade (83.75% detection accuracy). Both models, FaceNet and VGG16, show excellent face recognition accuracy (100%) if the face image is correctly detected by MTCNN. Therefore, for face recognition of visually impaired people, it is recommended to use MTCNN as the face detection method, followed by FaceNet or VGG16 for face recognition.
EVALUASI PENGENALAN WAJAH MENGGUNAKAN FACENET PADA PEGAWAI DINAS KOMUNIKASI DAN INFORMATIKA KOTA SAMARINDA Hidayat, Aji Said Wahyudi; Setyanto, Arief; Yaqin, Ainul
Information System Journal Vol. 8 No. 01 (2025): Information System Journal (INFOS)
Publisher : Universitas Amikom Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24076/infosjournal.2025v8i01.2015

Abstract

Penelitian ini bertujuan untuk melakukan evaluasi sistem presensi menggunakan pengenalan wajah berbasis aplikasi mobile. Sistem pengenalan wajah di bangun menggunakan library facenet pada service yang disiapkan di server. Sistem tersebut diuji di lingkungan Dinas Komunikasi dan Informatika Kota Samarinda terhadap 40 subyek pegawai dengan sampel per pegawai sebanyak 10 foto. Pengujian dilakukan dalam berbagai kondisi pencahayaan dan pose. Evaluasi dilakukan terhadap ketepatan pengenalan wajah pada saat presensi masuk, dan presensi keluar. Hasil penelitian menunjukan bahwa sistem pengenalan wajah dapat berjalan efektif di berbagai posisi wajah, selain itu pencahayaan yang lebih terang mendukung keberhasilan pengenalan wajah tersebut, dan proses pengunggahan dapat dilakukan kurang dari satu menit.
Analisa Penerapan Sensor Detak Jantung Pada Teknologi Virtual Reality Terapi Acrophobia Hidayat, Kardilah Rohmat; Setyanto, Arief; Sadikin, Moh. Fal
Jurnal Informa : Jurnal Penelitian dan Pengabdian Masyarakat Vol 8 No 2 (2022): Desember
Publisher : Politeknik Indonusa Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46808/informa.v8i2.220

Abstract

Fear of heights can also be called acrophobia, which is to have a very excessive fear of heights. The fear experienced by acrophobia sufferers causes the effects of symptoms, including anxiety, panic, and stress, when in a high area. To treat phobia of heights is not so easy, but it can be overcome by conducting therapy. One of the therapies carried out is exposure which is an effective therapeutic medium in overcoming acrophobia. In this study, an analysis was carried out using the pretest-posttest control group method for VRET (Virtual Reality Exposure Therapy) validation as well as a comparison method between the products developed and products on the market for validation of heart rate sensors. The results showed that VRET (Virtual Reality Exposure Therapy) is effective in lowering individual perceptions of changes in physiological reactions experienced related to altitude situations and the heart rate sensor module can be used for Virtual Reality Acrophobia applications. The use of a heart rate sensor is recommended on the left hand because research shows a small difference in accuracy between the heart rate sensor and the Oxymeter.
Efektivitas Pengelolaan Data Rumah Tangga Miskin Melalui Pemanfaatan QGIS: Pada Program Bantuan dan Jaminan Sosial Di Kabupaten Bantul Khasanah, Nabiila Rizqi; Rahmawati, Agustina; Setyanto, Arief
Jurnal Ilmiah Publika Vol 12 No 1 (2024): Jurnal Ilmiah Publika
Publisher : Faculty of Social and Political Sciences, Universitas Swadaya Gunung Jati

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33603/publika.v12i1.9835

Abstract

Dinas Sosial Kabupaten memanfaatkan aplikasi QGIS sebagai sistem pemetaan dengan bentuk peta wilayah pada 17 kecamatan di Kabupaten Bantul. Kegunaan pemetaan ini supaya pembagian kepemilikan aset DTKS lebih mudah diakses, 17 kecamatan tersebut terdiri dari Srandakan, Sanden, Kretek, Pundong, Bambanglipuro, Pandak, Bantul, Jetis, Imogiri, Dlingo, Pleret, Piyungan, Banguntapan, Sewon, Kasihan, Pajangan, dan Sedayu. Dengan demikian adanya aplikasi sistem Informasi Geografis (SIG) atau Quantum Geographic Information System (QGIS) dapat meringkas dan memudahkan Dinas Sosial Kabupaten Bantul untuk menyurvei hasil kepemilikan aset DTKS per kecamatan di Kabupaten Bantul. Objek penelitian dilakukan di Dinas Sosial di Kabupaten Bantul dengan subjek penelitian kepala bagian bidang BANJAMSOS serta staff umum dan staff IT bidang BANJAMSOS. Teknis pengumpulan data dengan observasi, wawancara dan dokumentasi. Untuk teknis analisis datanya menggunakan metode kualitatif deskriptif dengan mode analisis reduksi data, penyajian data dan kesimpulan. Hasil yang diperoleh penelitian pada sisi efektivitas program bisa dibilang sudah efektif pada indikator pencapaian tujuan dan integrasi karena manfaat hasil program bisa dirasakan masyarakat. Namun masih kurang efektif pada bagian adaptasi, masih perlu beberapa penyesuaian agar sisi adaptasi tersebut bisa menjadi efektif, yaitu perlu penyesuaian pada karyawan sarana prasarana dan perkembangan data pada hasil pengeloaan DTKS. Faktor penghambat pada efektivitas pengeloaan DTKS masih kurang pahamnya pegawai mengenai pemanfaatan aplikasi, namun tingkat keberhasilan yang diberikan sudah efektif karena sudah menghasilkan output data berupa hasil pemetaan DTKS yang bisa diakses melalui web geoportal kabupaten.
Distribusi dan Komposisi Spesies Lobster (Panulirus spp.) yang Tertangkap di Perairan Sumatra Barat dan Pulau Tello, Sumatra Utara, Indonesia: Distribution and Species Composition of Lobsters (Panulirus spp.) Caught in the Waters of West Sumatra and Tello Island, North Sumatra, Indonesia Setyanto, Arief; Asmirijal, Amrey Syahnur; Wiadnya, Dewa Gede Raka; Isdianto, Andik; Caesar, Nico Rahman; Irwan Jatmiko; Utama, Andria Ansri; Agus Tumulyadi; Bintoro, Gatut; Lelono, Tri Djoko; Sutjipto, Darmawan Ockto; Hadiyah, Lisa Nur; Marsela, Kristina; Dhea, Luthfia Ayu; Asadi, M. Arif
JFMR (Journal of Fisheries and Marine Research) Vol. 9 No. 2 (2025): JFMR on July
Publisher : Faculty of Fisheries and Marine Science, Brawijaya University, Malang, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/ub.jfmr.2025.009.02.9

Abstract

Perairan Samudra Hindia Timur memiliki keanekaragaman lobster yang tinggi, di mana Indonesia menjadi habitat bagi 6 dari 19 spesies Panulirus yang ada di dunia. Wilayah barat Pulau Sumatra, yang termasuk dalam kawasan ini, memiliki potensi besar dalam perikanan lobster. Penelitian ini bertujuan untuk mengkaji komposisi spesies, distribusi panjang karapas dan berat lobster beserta pola pertumbuhannya, serta menilai kesesuaian hasil tangkapan dengan ketentuan PERMEN KP No. 16 Tahun 2022 di perairan Sumatra Barat dan Pulau Tello, Sumatra Utara. Analisis yang digunakan meliputi identifikasi spesies, komposisi, distribusi frekuensi, chi-square, ANOVA satu arah, dan regresi. Hasil menunjukkan bahwa di perairan Sumatra Barat ditemukan enam spesies lobster, dengan Panulirus homarus (lobster pasir) sebagai spesies dominan, sedangkan di Pulau Tello ditemukan empat spesies, dengan dominasi P. versicolor (lobster bambu). Distribusi panjang karapas tertinggi di Sumatra Barat terdapat pada kisaran 8–9 cm (442 ekor), dan berat pada 220–360 gram (529 ekor), dengan pola pertumbuhan alometrik negatif. Di Pulau Tello, panjang karapas terbanyak berada pada kisaran 12–13 cm (30 ekor), dan berat pada 500–640 gram (25 ekor), juga menunjukkan pertumbuhan alometrik negatif. Seluruh komposisi lobster yang tertangkap di kedua lokasi dinilai layak tangkap berdasarkan ketentuan regulasi yang berlaku.   The East Indian Ocean holds significant potential for lobster diversity, and Indonesia is home to 6 of the 19 Panulirus species found globally. West Sumatra, located within this region, has promising lobster resources. This study aimed to assess species composition, carapace length and weight distribution, growth patterns, and compliance with fishing regulations (PERMEN-KP No. 16/2022) in the waters of West Sumatra and Tello Island, North Sumatra. Analytical methods included species identification, composition analysis, frequency distribution, chi-square testing, one-way ANOVA, and regression analysis. Findings revealed that six lobster species were identified in West Sumatra, dominated by scalloped spiny lobster (P. homarus), while four species were found on Tello Island, with painted spiny lobster (P. versicolor) being most abundant. In West Sumatra, the dominant carapace length class was 8–9 cm (442 individuals), and the most common weight class was 220–360 g (529 individuals), both exhibiting a negative allometric growth pattern. Meanwhile, Tello Island lobsters showed a dominant carapace length of 12–13 cm (30 individuals) and weight range of 500–640 g (25 individuals), also with negative allometric growth. Overall, the lobster catch composition from both locations was found to comply with the sustainable capture guidelines outlined in PERMEN-KP No. 16/2022.
Systematic Literature Review terhadap Klasifikasi Emosi pada Lirik Lagu Berbahasa Ambon menggunakan Metode Bidirectional LSTM dengan Glove Word Representation Weighting Kholida Zia Abidin; Arief Setyanto; Rudyanto Arief
Pixel :Jurnal Ilmiah Komputer Grafis Vol. 16 No. 2 (2023): Pixel :Jurnal Ilmiah Komputer Grafis dan Ilmu Komputer
Publisher : UNIVERSITAS STEKOM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/pixel.v16i2.1641

Abstract

One form of text that can express emotions is lyrics. Lyrics are a type of literary work expressed in the form of words, the contents of which can express the songwriter's personal feelings, thoughts, and emotions. Therefore, the lyrics can be used as an object of research on the classification of emotions. The classification of song lyrics really requires bi-LSTM to be the input value when classifying data in the form of song lyrics in order to get high accuracy results. This research was carried out systematically and the results were measurable. Descriptive qualitative research was used in this research. The results of identification based on case studies and statistics show that the reviews of popular topics are identical. The classification of song lyrics really requires bi-LSTM to be the input value when classifying data in the form of song lyrics in order to get high accuracy results.
Co-Authors (Menunda Publikasi) Abdillah, M A Agastya, I Made Artha Agung, Kris Agus Sukarno Agus Tumulyadi Agustina Rahmawati Ahmad Afief Amrullah Ahmad Afief Amrullah Ahmad Naufal Labiib Nabhaan Ahmad Tantoni Ainul Yaqin Akhmad Fadjeri Al Maky, Nuril Huda Aliyah, Nada Rahma Amanda Rifan Fathoni Amir Fatah Sofyan Amiruddin Khairul Huda Ammara, Laya Amrullah, Ahmad Afief Anam, M. Choirul Anang Anang Andi Kriswantono Andik Isdianto Anggit Dwi Hartanto Anggit Hartanto Annisa Gatri Zakinah annisa gatri zakinah Anthon Andrimida, Anthon Anton, Tri Arbiansyah, Moh Junit Ariefandi, Muhammad Fikri Asadi, M. Arif Askar, Muhammad Ichfan Asmirijal, Amrey Syahnur Asro Nasiri Asro Nasiri Asro Nasiri Astika Wulansari Astuti , Septiana Sri Atmaja, Albertus Aldo Danar Atminenggar, Alinda Najma Aulia Lanudia Fathah Basit, Muhammad Abdul Bawan, Sarah Bunda Desi Béjar, Rodrigo Martínez Berlania Mahardika Putri Constantin Menteng Daduk Setyohadi Darmawan Ockto Sutjipto Dedi Tri Hermanto Dewa Gede Raka Wiadnya Dewa Gede Raka Wiadnya Dewa Gede Raka Wiadnya, Dewa Gede DHANI ARIATMANTO Dhea, Luthfia Ayu Dhiana Puspitawati Diah, M. Dian Rusvinasari Dinar Mustofa Dwi Satrio Anurogo Eko Pramono Eko Pramono Eko Pramono Ema Utami Emha Emha Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi Emha Taufiq Luthfi F Purwanto Fathah, Aulia Lanudia Fazlul Rahman Ferry Wahyu Wibowo Ferry Wahyu Wibowo Ferry Wahyu Wibowo Fiqih Akbari Gatut Bintoro Gibran, Ibrahim El Gibran, Khalil Ginting, Meliani Ananda Br. Gunawan Wicahyono Hadiyah, Lisa Nur Hafidz Sanjaya, Hafidz Hamdallah, Dika Puja Hamdikatama, Bimantyoso Hamka Suyuti Hamzah Hamzah Hanif Al Fatta HANIF AL FATTA Hanif Al Fatta Hanif Al Fattah Hanifa Ramadhani Hari Susanto Harlyan, Ledhyane Eka Henderi . Hendi Muhammad, Alva Heri Sismoro Hidayat, Aji Said Wahyudi Hidayat, Kardilah Rohmat Hizbul Izzi I Made Artha Agastya Ilham Mubarog Imam Syafii Imam Syafii Imam Thoib Irianies Cahya Gozali Irwan Jatmiko Ishaq, Syafrial Yanuar Jamilah Karaman Jimmy H Moedjahedy José Ramón Martínez Salio Kamila, Firda Nikmatul Kartikasari, Wahida Khairan marzuki Khasanah, Nabiila Rizqi Kholida Zia Abidin Komang Aryasa Kris Agung Kudrati, Amelinda Vivian Kumara Ari Yuana Kumoro, Danang Tejo Kurniawan, Mei P Kusnawi Kusnawi KUSRINI Kusrini Kusrini Kusrini, Kusrini La Ariandi, Hadin López, Alba Puelles M. Diah M. RUDYANTO ARIEF M. Rudyanto Arief Maehendrayuga, Arief Mardya Hayati Marsela, Kristina Martiani, Evi Martínez-Béjar, Rodrigo Mei P Kurniawan Mei P. Kurniawan Mohamad Syafri Lamato Morita Puspita Sari Muchamad Zainul Muhamad Maksum Hidayat Muhammad Arif Asadi, Muhammad Arif Muhammad Arif Rahman Muhammad Azmi Muhammad Ghozaly Salim Muhammad Javier Irsyad Muhammad Reza Muhammad Reza Riansyah Muhammad Yusuf Munandar, Arief Muqorobin Muqorobin Nabhaan, Ahmad Naufal Labiib Nabilla, Azma Salma Nadea Cipta Laksmita Nasiri, Asro Naufal Hilda Bahtiar nfn Sarip Nggego, Dedy Abdianto Ni Nyoman Utami Januhari, Ni Nyoman Nico Rahman Caesar Nila Feby Puspitasari, Nila Feby Nina Kurnia Hikmawati Nisrina, Aliyya Nizery, Sefhanissa Puspa Retno Nuddin Harahab Nugroho, Agung Nur Khamidah oktiyas muzaky Luthfi, oktiyas muzaky Pahlawan, Muammar Reza Pangestu, Wanda Suryani Pattisahusiwa, Annisa Shafira P. Prastyo, Agung Budi Prayoghi, M. Lukman Publikasi), (Menunda Putra, Muhammad Naufal Eka Putri, Berlania Mahardika Rachmanto, Rakandhiya Daanii Rafif Zul Fahmi Rahmad Arif Setiawan Rahman, Aulia Tegar Rahmat Taufik R.L Bau Rakandhiya Daanii Rachmanto Ramdhani, Mohamad Dhicy Rarasrum Dyah Kasitowati Ratno Kustiawan Ria Andriani Ripto Sudiyarno Rismayani Rismayani Roni Sasongko Rudyanto Arief Sadikin, Moh. Fal Samuel, Pratama Diffi San Sudirman Saputra, Tedy Eko Sarah Bunda Desi Bawan Sarip, nfn Seniwati, Erni Septiansyah, Moch. Rafli Shahruri, Rifandi Annas Simone Martin Marotta Siswo Utomo, Mardi Siti Alvi Sholikhatin Siti Halimah Soejono, Ajie Wibowo Sriyati Sriyati Stephan Adriansyah Hulukati Suardi, Heri Sucianingsih, Ni Komang Diah Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan Sudarmawan, Sudarmawan Sudirman, San Suhardi Aras Sukoco Sunardi Sunardi Supriyadi Supriyadi Supriyadi Supriyadi Suwanto Raharjo Suyadi Suyadi Suyuti, Hamka Syarief, Salsabila Nazmie Putri TONNY HIDAYAT Totok Wahyu Caturiyanto Tri Djoko Lelono Tumulyadi, Agus Tyas, Herlin Widi Aning Utama, Andria Ansri Veithzal Rivai Zainal Wahyu Nugroho Widhiarta, Widhiarta Wijaya, Sony Yasmin, Delviega Aisyah Yeni Kartika Sari, Yeni Kartika Yorarizka, Putri Devi Yuliana Yuliana Yumna, Orryza Nayla Zul Hisyam